Mercurial > repos > public > sbplib_julia
view test/testSbpOperators.jl @ 594:cc86b920531a refactor/toml_operator_format
Change the readoperator function to use the .toml format
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 02 Dec 2020 15:26:13 +0100 |
parents | 8e4f86c4bf75 |
children | 03ef4d4740ab |
line wrap: on
line source
using Test using Sbplib.SbpOperators using Sbplib.Grids using Sbplib.RegionIndices using Sbplib.LazyTensors using LinearAlgebra @testset "SbpOperators" begin @testset "Stencil" begin s = SbpOperators.Stencil((-2,2), (1.,2.,2.,3.,4.)) @test s isa SbpOperators.Stencil{Float64, 5} @test eltype(s) == Float64 @test SbpOperators.scale(s, 2) == SbpOperators.Stencil((-2,2), (2.,4.,4.,6.,8.)) end # @testset "apply_quadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # h = 0.5 # # @test apply_quadrature(op, h, 1.0, 10, 100) == h # # N = 10 # qc = op.quadratureClosure # q = h.*(qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # # for i ∈ 1:N # @test apply_quadrature(op, h, 1.0, i, N) == q[i] # end # # v = [2.,3.,2.,4.,5.,4.,3.,4.,5.,4.5] # for i ∈ 1:N # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] # end # end @testset "SecondDerivative" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 3.5 g = EquidistantGrid(101, 0.0, L) Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) f0(x) = 1. f1(x) = x f2(x) = 1/2*x^2 f3(x) = 1/6*x^3 f4(x) = 1/24*x^4 f5(x) = sin(x) f5ₓₓ(x) = -f5(x) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) @test Dₓₓ isa TensorMapping{T,1,1} where T @test Dₓₓ' isa TensorMapping{T,1,1} where T # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the l2-norm. @test norm(Dₓₓ*v0) ≈ 0.0 atol=5e-10 @test norm(Dₓₓ*v1) ≈ 0.0 atol=5e-10 @test Dₓₓ*v2 ≈ v0 atol=5e-11 @test Dₓₓ*v3 ≈ v1 atol=5e-11 h = spacing(g)[1]; l2(v) = sqrt(h*sum(v.^2)) @test Dₓₓ*v4 ≈ v2 atol=5e-4 norm=l2 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 end @testset "Laplace2D" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 1.5 Ly = 3.2 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) L = Laplace(g, op.innerStencil, op.closureStencils) f0(x,y) = 2. f1(x,y) = x+y f2(x,y) = 1/2*x^2 + 1/2*y^2 f3(x,y) = 1/6*x^3 + 1/6*y^3 f4(x,y) = 1/24*x^4 + 1/24*y^4 f5(x,y) = sin(x) + cos(y) f5ₓₓ(x,y) = -f5(x,y) v0 = evalOn(g,f0) v1 = evalOn(g,f1) v2 = evalOn(g,f2) v3 = evalOn(g,f3) v4 = evalOn(g,f4) v5 = evalOn(g,f5) v5ₓₓ = evalOn(g,f5ₓₓ) @test L isa TensorMapping{T,2,2} where T @test L' isa TensorMapping{T,2,2} where T # 4th order interior stencil, 2nd order boundary stencil, # implies that L*v should be exact for v - monomial up to order 3. # Exact differentiation is measured point-wise. For other grid functions # the error is measured in the H-norm. @test norm(L*v0) ≈ 0 atol=5e-10 @test norm(L*v1) ≈ 0 atol=5e-10 @test L*v2 ≈ v0 # Seems to be more accurate @test L*v3 ≈ v1 atol=5e-10 h = spacing(g) l2(v) = sqrt(prod(h)*sum(v.^2)) @test L*v4 ≈ v2 atol=5e-4 norm=l2 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 end @testset "DiagonalInnerProduct" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 2.3 g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g,op.quadratureClosure) v = ones(Float64, size(g)) @test H isa TensorMapping{T,1,1} where T @test H' isa TensorMapping{T,1,1} where T @test sum(H*v) ≈ L @test H*v == H'*v end @testset "Quadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 2.3 Ly = 5.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) Q = Quadrature(g, op.quadratureClosure) @test Q isa TensorMapping{T,2,2} where T @test Q' isa TensorMapping{T,2,2} where T v = ones(Float64, size(g)) @test sum(Q*v) ≈ Lx*Ly v = 2*ones(Float64, size(g)) @test_broken sum(Q*v) ≈ 2*Lx*Ly @test Q*v == Q'*v end @testset "InverseDiagonalInnerProduct" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 2.3 g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g, op.quadratureClosure) Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) v = evalOn(g, x->sin(x)) @test Hi isa TensorMapping{T,1,1} where T @test Hi' isa TensorMapping{T,1,1} where T @test Hi*H*v ≈ v @test Hi*v == Hi'*v end @testset "InverseQuadrature" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 7.3 Ly = 8.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) Q = Quadrature(g, op.quadratureClosure) Qinv = InverseQuadrature(g, op.quadratureClosure) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) @test Qinv isa TensorMapping{T,2,2} where T @test Qinv' isa TensorMapping{T,2,2} where T @test_broken Qinv*(Q*v) ≈ v @test Qinv*v == Qinv'*v end @testset "BoundaryRestrictrion" begin op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @testset "Constructors" begin @testset "1D" begin e_l = BoundaryRestriction{Lower}(op.eClosure,size(g_1D)[1]) @test e_l == BoundaryRestriction(g_1D,op.eClosure,Lower()) @test e_l == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Lower}()) @test e_l isa TensorMapping{T,0,1} where T e_r = BoundaryRestriction{Upper}(op.eClosure,size(g_1D)[1]) @test e_r == BoundaryRestriction(g_1D,op.eClosure,Upper()) @test e_r == boundary_restriction(g_1D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_r isa TensorMapping{T,0,1} where T end @testset "2D" begin e_w = boundary_restriction(g_2D,op.eClosure,CartesianBoundary{1,Upper}()) @test e_w isa InflatedTensorMapping @test e_w isa TensorMapping{T,1,2} where T end end e_l = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Lower}()) e_r = boundary_restriction(g_1D, op.eClosure, CartesianBoundary{1,Upper}()) e_w = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Lower}()) e_e = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{1,Upper}()) e_s = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Lower}()) e_n = boundary_restriction(g_2D, op.eClosure, CartesianBoundary{2,Upper}()) @testset "Sizes" begin @testset "1D" begin @test domain_size(e_l) == (11,) @test domain_size(e_r) == (11,) @test range_size(e_l) == () @test range_size(e_r) == () end @testset "2D" begin @test domain_size(e_w) == (11,15) @test domain_size(e_e) == (11,15) @test domain_size(e_s) == (11,15) @test domain_size(e_n) == (11,15) @test range_size(e_w) == (15,) @test range_size(e_e) == (15,) @test range_size(e_s) == (11,) @test range_size(e_n) == (11,) end end @testset "Application" begin @testset "1D" begin v = evalOn(g_1D,x->1+x^2) u = fill(3.124) @test (e_l*v)[] == v[1] @test (e_r*v)[] == v[end] @test (e_r*v)[1] == v[end] @test e_l'*u == [u[]; zeros(10)] @test e_r'*u == [zeros(10); u[]] end @testset "2D" begin v = rand(11, 15) u = fill(3.124) @test e_w*v == v[1,:] @test e_e*v == v[end,:] @test e_s*v == v[:,1] @test e_n*v == v[:,end] g_x = rand(11) g_y = rand(15) G_w = zeros(Float64, (11,15)) G_w[1,:] = g_y G_e = zeros(Float64, (11,15)) G_e[end,:] = g_y G_s = zeros(Float64, (11,15)) G_s[:,1] = g_x G_n = zeros(Float64, (11,15)) G_n[:,end] = g_x @test e_w'*g_y == G_w @test e_e'*g_y == G_e @test e_s'*g_x == G_s @test e_n'*g_x == G_n end @testset "Regions" begin u = fill(3.124) @test (e_l'*u)[Index(1,Lower)] == 3.124 @test (e_l'*u)[Index(2,Lower)] == 0 @test (e_l'*u)[Index(6,Interior)] == 0 @test (e_l'*u)[Index(10,Upper)] == 0 @test (e_l'*u)[Index(11,Upper)] == 0 @test (e_r'*u)[Index(1,Lower)] == 0 @test (e_r'*u)[Index(2,Lower)] == 0 @test (e_r'*u)[Index(6,Interior)] == 0 @test (e_r'*u)[Index(10,Upper)] == 0 @test (e_r'*u)[Index(11,Upper)] == 3.124 end end @testset "Inferred" begin v = ones(Float64, 11) u = fill(1.) @inferred apply(e_l, v) @inferred apply(e_r, v) @inferred apply_transpose(e_l, u, 4) @inferred apply_transpose(e_l, u, Index(1,Lower)) @inferred apply_transpose(e_l, u, Index(2,Lower)) @inferred apply_transpose(e_l, u, Index(6,Interior)) @inferred apply_transpose(e_l, u, Index(10,Upper)) @inferred apply_transpose(e_l, u, Index(11,Upper)) @inferred apply_transpose(e_r, u, 4) @inferred apply_transpose(e_r, u, Index(1,Lower)) @inferred apply_transpose(e_r, u, Index(2,Lower)) @inferred apply_transpose(e_r, u, Index(6,Interior)) @inferred apply_transpose(e_r, u, Index(10,Upper)) @inferred apply_transpose(e_r, u, Index(11,Upper)) end end # # @testset "NormalDerivative" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) # # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) # d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) # # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # v∂x = evalOn(g, (x,y)-> 2*x + y) # v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) # # @test d_w isa TensorMapping{T,2,1} where T # @test d_w' isa TensorMapping{T,1,2} where T # # @test domain_size(d_w, (3,2)) == (2,) # @test domain_size(d_e, (3,2)) == (2,) # @test domain_size(d_s, (3,2)) == (3,) # @test domain_size(d_n, (3,2)) == (3,) # # @test size(d_w'*v) == (6,) # @test size(d_e'*v) == (6,) # @test size(d_s'*v) == (5,) # @test size(d_n'*v) == (5,) # # @test d_w'*v .≈ v∂x[1,:] # @test d_e'*v .≈ v∂x[5,:] # @test d_s'*v .≈ v∂y[:,1] # @test d_n'*v .≈ v∂y[:,6] # # # d_x_l = zeros(Float64, 5) # d_x_u = zeros(Float64, 5) # for i ∈ eachindex(d_x_l) # d_x_l[i] = op.dClosure[i-1] # d_x_u[i] = -op.dClosure[length(d_x_u)-i] # end # # d_y_l = zeros(Float64, 6) # d_y_u = zeros(Float64, 6) # for i ∈ eachindex(d_y_l) # d_y_l[i] = op.dClosure[i-1] # d_y_u[i] = -op.dClosure[length(d_y_u)-i] # end # # function prod_matrix(x,y) # G = zeros(Float64, length(x), length(y)) # for I ∈ CartesianIndices(G) # G[I] = x[I[1]]*y[I[2]] # end # # return G # end # # g_x = [1,2,3,4.0,5] # g_y = [5,4,3,2,1.0,11] # # G_w = prod_matrix(d_x_l, g_y) # G_e = prod_matrix(d_x_u, g_y) # G_s = prod_matrix(g_x, d_y_l) # G_n = prod_matrix(g_x, d_y_u) # # # @test size(d_w*g_y) == (UnknownDim,6) # @test size(d_e*g_y) == (UnknownDim,6) # @test size(d_s*g_x) == (5,UnknownDim) # @test size(d_n*g_x) == (5,UnknownDim) # # # These tests should be moved to where they are possible (i.e we know what the grid should be) # @test_broken d_w*g_y .≈ G_w # @test_broken d_e*g_y .≈ G_e # @test_broken d_s*g_x .≈ G_s # @test_broken d_n*g_x .≈ G_n # end # # @testset "BoundaryQuadrature" begin # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) # H_n = BoundaryQuadrature(op, g, CartesianBoundary{2,Upper}()) # # v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) # # function get_quadrature(N) # qc = op.quadratureClosure # q = (qc..., ones(N-2*closuresize(op))..., reverse(qc)...) # @assert length(q) == N # return q # end # # v_w = v[1,:] # v_e = v[10,:] # v_s = v[:,1] # v_n = v[:,11] # # q_x = spacing(g)[1].*get_quadrature(10) # q_y = spacing(g)[2].*get_quadrature(11) # # @test H_w isa TensorOperator{T,1} where T # # @test domain_size(H_w, (3,)) == (3,) # @test domain_size(H_n, (3,)) == (3,) # # @test range_size(H_w, (3,)) == (3,) # @test range_size(H_n, (3,)) == (3,) # # @test size(H_w*v_w) == (11,) # @test size(H_e*v_e) == (11,) # @test size(H_s*v_s) == (10,) # @test size(H_n*v_n) == (10,) # # @test H_w*v_w .≈ q_y.*v_w # @test H_e*v_e .≈ q_y.*v_e # @test H_s*v_s .≈ q_x.*v_s # @test H_n*v_n .≈ q_x.*v_n # # @test H_w'*v_w == H_w'*v_w # @test H_e'*v_e == H_e'*v_e # @test H_s'*v_s == H_s'*v_s # @test H_n'*v_n == H_n'*v_n # end end