Mercurial > repos > public > sbplib_julia
diff test/testSbpOperators.jl @ 594:cc86b920531a refactor/toml_operator_format
Change the readoperator function to use the .toml format
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 02 Dec 2020 15:26:13 +0100 |
parents | 8e4f86c4bf75 |
children | 03ef4d4740ab |
line wrap: on
line diff
--- a/test/testSbpOperators.jl Wed Dec 02 15:24:56 2020 +0100 +++ b/test/testSbpOperators.jl Wed Dec 02 15:26:13 2020 +0100 @@ -16,7 +16,7 @@ end # @testset "apply_quadrature" begin -# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # h = 0.5 # # @test apply_quadrature(op, h, 1.0, 10, 100) == h @@ -37,7 +37,7 @@ # end @testset "SecondDerivative" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 3.5 g = EquidistantGrid(101, 0.0, L) Dāā = SecondDerivative(g,op.innerStencil,op.closureStencils) @@ -77,7 +77,7 @@ @testset "Laplace2D" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 1.5 Ly = 3.2 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) @@ -119,7 +119,7 @@ end @testset "DiagonalInnerProduct" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 2.3 g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g,op.quadratureClosure) @@ -132,7 +132,7 @@ end @testset "Quadrature" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 2.3 Ly = 5.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) @@ -152,7 +152,7 @@ end @testset "InverseDiagonalInnerProduct" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) L = 2.3 g = EquidistantGrid(77, 0.0, L) H = DiagonalInnerProduct(g, op.quadratureClosure) @@ -166,7 +166,7 @@ end @testset "InverseQuadrature" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) Lx = 7.3 Ly = 8.2 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) @@ -182,7 +182,7 @@ end @testset "BoundaryRestrictrion" begin - op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") + op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) @@ -320,7 +320,7 @@ end # # @testset "NormalDerivative" begin -# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) # # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) @@ -397,7 +397,7 @@ # end # # @testset "BoundaryQuadrature" begin -# op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") +# op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) # # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())