comparison test/testSbpOperators.jl @ 594:cc86b920531a refactor/toml_operator_format

Change the readoperator function to use the .toml format
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 02 Dec 2020 15:26:13 +0100
parents 8e4f86c4bf75
children 03ef4d4740ab
comparison
equal deleted inserted replaced
593:fa03dae0ff0b 594:cc86b920531a
14 @test eltype(s) == Float64 14 @test eltype(s) == Float64
15 @test SbpOperators.scale(s, 2) == SbpOperators.Stencil((-2,2), (2.,4.,4.,6.,8.)) 15 @test SbpOperators.scale(s, 2) == SbpOperators.Stencil((-2,2), (2.,4.,4.,6.,8.))
16 end 16 end
17 17
18 # @testset "apply_quadrature" begin 18 # @testset "apply_quadrature" begin
19 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 19 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
20 # h = 0.5 20 # h = 0.5
21 # 21 #
22 # @test apply_quadrature(op, h, 1.0, 10, 100) == h 22 # @test apply_quadrature(op, h, 1.0, 10, 100) == h
23 # 23 #
24 # N = 10 24 # N = 10
35 # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i] 35 # @test apply_quadrature(op, h, v[i], i, N) == q[i]*v[i]
36 # end 36 # end
37 # end 37 # end
38 38
39 @testset "SecondDerivative" begin 39 @testset "SecondDerivative" begin
40 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 40 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
41 L = 3.5 41 L = 3.5
42 g = EquidistantGrid(101, 0.0, L) 42 g = EquidistantGrid(101, 0.0, L)
43 Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils) 43 Dₓₓ = SecondDerivative(g,op.innerStencil,op.closureStencils)
44 44
45 f0(x) = 1. 45 f0(x) = 1.
75 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2 75 @test Dₓₓ*v5 ≈ -v5 atol=5e-4 norm=l2
76 end 76 end
77 77
78 78
79 @testset "Laplace2D" begin 79 @testset "Laplace2D" begin
80 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 80 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
81 Lx = 1.5 81 Lx = 1.5
82 Ly = 3.2 82 Ly = 3.2
83 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly)) 83 g = EquidistantGrid((102,131), (0.0, 0.0), (Lx,Ly))
84 L = Laplace(g, op.innerStencil, op.closureStencils) 84 L = Laplace(g, op.innerStencil, op.closureStencils)
85 85
117 @test L*v4 ≈ v2 atol=5e-4 norm=l2 117 @test L*v4 ≈ v2 atol=5e-4 norm=l2
118 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2 118 @test L*v5 ≈ v5ₓₓ atol=5e-4 norm=l2
119 end 119 end
120 120
121 @testset "DiagonalInnerProduct" begin 121 @testset "DiagonalInnerProduct" begin
122 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 122 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
123 L = 2.3 123 L = 2.3
124 g = EquidistantGrid(77, 0.0, L) 124 g = EquidistantGrid(77, 0.0, L)
125 H = DiagonalInnerProduct(g,op.quadratureClosure) 125 H = DiagonalInnerProduct(g,op.quadratureClosure)
126 v = ones(Float64, size(g)) 126 v = ones(Float64, size(g))
127 127
130 @test sum(H*v) ≈ L 130 @test sum(H*v) ≈ L
131 @test H*v == H'*v 131 @test H*v == H'*v
132 end 132 end
133 133
134 @testset "Quadrature" begin 134 @testset "Quadrature" begin
135 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 135 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
136 Lx = 2.3 136 Lx = 2.3
137 Ly = 5.2 137 Ly = 5.2
138 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) 138 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
139 139
140 Q = Quadrature(g, op.quadratureClosure) 140 Q = Quadrature(g, op.quadratureClosure)
150 150
151 @test Q*v == Q'*v 151 @test Q*v == Q'*v
152 end 152 end
153 153
154 @testset "InverseDiagonalInnerProduct" begin 154 @testset "InverseDiagonalInnerProduct" begin
155 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 155 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
156 L = 2.3 156 L = 2.3
157 g = EquidistantGrid(77, 0.0, L) 157 g = EquidistantGrid(77, 0.0, L)
158 H = DiagonalInnerProduct(g, op.quadratureClosure) 158 H = DiagonalInnerProduct(g, op.quadratureClosure)
159 Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure) 159 Hi = InverseDiagonalInnerProduct(g,op.quadratureClosure)
160 v = evalOn(g, x->sin(x)) 160 v = evalOn(g, x->sin(x))
164 @test Hi*H*v ≈ v 164 @test Hi*H*v ≈ v
165 @test Hi*v == Hi'*v 165 @test Hi*v == Hi'*v
166 end 166 end
167 167
168 @testset "InverseQuadrature" begin 168 @testset "InverseQuadrature" begin
169 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 169 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
170 Lx = 7.3 170 Lx = 7.3
171 Ly = 8.2 171 Ly = 8.2
172 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly)) 172 g = EquidistantGrid((77,66), (0.0, 0.0), (Lx,Ly))
173 173
174 Q = Quadrature(g, op.quadratureClosure) 174 Q = Quadrature(g, op.quadratureClosure)
180 @test_broken Qinv*(Q*v) ≈ v 180 @test_broken Qinv*(Q*v) ≈ v
181 @test Qinv*v == Qinv'*v 181 @test Qinv*v == Qinv'*v
182 end 182 end
183 183
184 @testset "BoundaryRestrictrion" begin 184 @testset "BoundaryRestrictrion" begin
185 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 185 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
186 g_1D = EquidistantGrid(11, 0.0, 1.0) 186 g_1D = EquidistantGrid(11, 0.0, 1.0)
187 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0)) 187 g_2D = EquidistantGrid((11,15), (0.0, 0.0), (1.0,1.0))
188 188
189 @testset "Constructors" begin 189 @testset "Constructors" begin
190 @testset "1D" begin 190 @testset "1D" begin
318 end 318 end
319 319
320 end 320 end
321 # 321 #
322 # @testset "NormalDerivative" begin 322 # @testset "NormalDerivative" begin
323 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 323 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
324 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) 324 # g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
325 # 325 #
326 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) 326 # d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
327 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) 327 # d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
328 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) 328 # d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
395 # @test_broken d_s*g_x .≈ G_s 395 # @test_broken d_s*g_x .≈ G_s
396 # @test_broken d_n*g_x .≈ G_n 396 # @test_broken d_n*g_x .≈ G_n
397 # end 397 # end
398 # 398 #
399 # @testset "BoundaryQuadrature" begin 399 # @testset "BoundaryQuadrature" begin
400 # op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") 400 # op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4)
401 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0)) 401 # g = EquidistantGrid((10,11), (0.0, 0.0), (1.0,1.0))
402 # 402 #
403 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}()) 403 # H_w = BoundaryQuadrature(op, g, CartesianBoundary{1,Lower}())
404 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}()) 404 # H_e = BoundaryQuadrature(op, g, CartesianBoundary{1,Upper}())
405 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}()) 405 # H_s = BoundaryQuadrature(op, g, CartesianBoundary{2,Lower}())