Mercurial > repos > public > sbplib_julia
view DiffOps/test/runtests.jl @ 244:a827568fc251 boundary_conditions
Fix NormalDerivative and add tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2019 21:22:36 +0200 |
parents | 9819243102dd |
children | 5571d2c5bf0f |
line wrap: on
line source
using Test using DiffOps using Grids using SbpOperators using RegionIndices using LazyTensors @testset "BoundaryValue" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) e_w = BoundaryValue(op, g, CartesianBoundary{1,Lower}()) e_e = BoundaryValue(op, g, CartesianBoundary{1,Upper}()) e_s = BoundaryValue(op, g, CartesianBoundary{2,Lower}()) e_n = BoundaryValue(op, g, CartesianBoundary{2,Upper}()) v = zeros(Float64, 4, 5) v[:,5] = [1, 2, 3,4] v[:,4] = [1, 2, 3,4] v[:,3] = [4, 5, 6, 7] v[:,2] = [7, 8, 9, 10] v[:,1] = [10, 11, 12, 13] @test e_w isa TensorMapping{T,2,1} where T @test e_w' isa TensorMapping{T,1,2} where T @test domain_size(e_w, (3,2)) == (2,) @test domain_size(e_e, (3,2)) == (2,) @test domain_size(e_s, (3,2)) == (3,) @test domain_size(e_n, (3,2)) == (3,) @test size(e_w'*v) == (5,) @test size(e_e'*v) == (5,) @test size(e_s'*v) == (4,) @test size(e_n'*v) == (4,) @test collect(e_w'*v) == [10,7,4,1.0,1] @test collect(e_e'*v) == [13,10,7,4,4.0] @test collect(e_s'*v) == [10,11,12,13.0] @test collect(e_n'*v) == [1,2,3,4.0] g_x = [1,2,3,4.0] g_y = [5,4,3,2,1.0] G_w = zeros(Float64, (4,5)) G_w[1,:] = g_y G_e = zeros(Float64, (4,5)) G_e[4,:] = g_y G_s = zeros(Float64, (4,5)) G_s[:,1] = g_x G_n = zeros(Float64, (4,5)) G_n[:,5] = g_x @test size(e_w*g_y) == (4,5) @test size(e_e*g_y) == (4,5) @test size(e_s*g_x) == (4,5) @test size(e_n*g_x) == (4,5) @test collect(e_w*g_y) == G_w @test collect(e_e*g_y) == G_e @test collect(e_s*g_x) == G_s @test collect(e_n*g_x) == G_n end @testset "NormalDerivative" begin op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) v∂x = evalOn(g, (x,y)-> 2*x + y) v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) @test d_w isa TensorMapping{T,2,1} where T @test d_w' isa TensorMapping{T,1,2} where T @test domain_size(d_w, (3,2)) == (2,) @test domain_size(d_e, (3,2)) == (2,) @test domain_size(d_s, (3,2)) == (3,) @test domain_size(d_n, (3,2)) == (3,) @test size(d_w'*v) == (6,) @test size(d_e'*v) == (6,) @test size(d_s'*v) == (5,) @test size(d_n'*v) == (5,) @test collect(d_w'*v) ≈ v∂x[1,:] @test collect(d_e'*v) ≈ v∂x[5,:] @test collect(d_s'*v) ≈ v∂y[:,1] @test collect(d_n'*v) ≈ v∂y[:,6] d_x_l = zeros(Float64, 5) d_x_u = zeros(Float64, 5) for i ∈ eachindex(d_x_l) d_x_l[i] = op.dClosure[i-1] d_x_u[i] = -op.dClosure[length(d_x_u)-i] end d_y_l = zeros(Float64, 6) d_y_u = zeros(Float64, 6) for i ∈ eachindex(d_y_l) d_y_l[i] = op.dClosure[i-1] d_y_u[i] = -op.dClosure[length(d_y_u)-i] end function ❓(x,y) G = zeros(Float64, length(x), length(y)) for I ∈ CartesianIndices(G) G[I] = x[I[1]]*y[I[2]] end return G end g_x = [1,2,3,4.0,5] g_y = [5,4,3,2,1.0,11] G_w = ❓(d_x_l, g_y) G_e = ❓(d_x_u, g_y) G_s = ❓(g_x, d_y_l) G_n = ❓(g_x, d_y_u) @test size(d_w*g_y) == (5,6) @test size(d_e*g_y) == (5,6) @test size(d_s*g_x) == (5,6) @test size(d_n*g_x) == (5,6) @test collect(d_w*g_y) ≈ G_w @test collect(d_e*g_y) ≈ G_e @test collect(d_s*g_x) ≈ G_s @test collect(d_n*g_x) ≈ G_n end