diff DiffOps/test/runtests.jl @ 244:a827568fc251 boundary_conditions

Fix NormalDerivative and add tests
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 26 Jun 2019 21:22:36 +0200
parents 9819243102dd
children 5571d2c5bf0f
line wrap: on
line diff
--- a/DiffOps/test/runtests.jl	Wed Jun 26 21:19:00 2019 +0200
+++ b/DiffOps/test/runtests.jl	Wed Jun 26 21:22:36 2019 +0200
@@ -5,8 +5,6 @@
 using RegionIndices
 using LazyTensors
 
-@test_broken false
-
 @testset "BoundaryValue" begin
     op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
     g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0))
@@ -56,9 +54,89 @@
     G_n = zeros(Float64, (4,5))
     G_n[:,5] = g_x
 
+    @test size(e_w*g_y) == (4,5)
+    @test size(e_e*g_y) == (4,5)
+    @test size(e_s*g_x) == (4,5)
+    @test size(e_n*g_x) == (4,5)
+
     @test collect(e_w*g_y) == G_w
     @test collect(e_e*g_y) == G_e
     @test collect(e_s*g_x) == G_s
     @test collect(e_n*g_x) == G_n
+end
 
+@testset "NormalDerivative" begin
+    op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt")
+    g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0))
+
+    d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}())
+    d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}())
+    d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}())
+    d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}())
+
+
+    v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y)
+    v∂x = evalOn(g, (x,y)-> 2*x + y)
+    v∂y = evalOn(g, (x,y)-> 2*(y-1) + x)
+
+    @test d_w  isa TensorMapping{T,2,1} where T
+    @test d_w' isa TensorMapping{T,1,2} where T
+
+    @test domain_size(d_w, (3,2)) == (2,)
+    @test domain_size(d_e, (3,2)) == (2,)
+    @test domain_size(d_s, (3,2)) == (3,)
+    @test domain_size(d_n, (3,2)) == (3,)
+
+    @test size(d_w'*v) == (6,)
+    @test size(d_e'*v) == (6,)
+    @test size(d_s'*v) == (5,)
+    @test size(d_n'*v) == (5,)
+
+    @test collect(d_w'*v) ≈ v∂x[1,:]
+    @test collect(d_e'*v) ≈ v∂x[5,:]
+    @test collect(d_s'*v) ≈ v∂y[:,1]
+    @test collect(d_n'*v) ≈ v∂y[:,6]
+
+
+    d_x_l = zeros(Float64, 5)
+    d_x_u = zeros(Float64, 5)
+    for i ∈ eachindex(d_x_l)
+        d_x_l[i] = op.dClosure[i-1]
+        d_x_u[i] = -op.dClosure[length(d_x_u)-i]
+    end
+
+    d_y_l = zeros(Float64, 6)
+    d_y_u = zeros(Float64, 6)
+    for i ∈ eachindex(d_y_l)
+        d_y_l[i] = op.dClosure[i-1]
+        d_y_u[i] = -op.dClosure[length(d_y_u)-i]
+    end
+
+    function ❓(x,y)
+        G = zeros(Float64, length(x), length(y))
+        for I ∈ CartesianIndices(G)
+            G[I] = x[I[1]]*y[I[2]]
+        end
+
+        return G
+    end
+
+    g_x = [1,2,3,4.0,5]
+    g_y = [5,4,3,2,1.0,11]
+
+    G_w = ❓(d_x_l, g_y)
+    G_e = ❓(d_x_u, g_y)
+    G_s = ❓(g_x, d_y_l)
+    G_n = ❓(g_x, d_y_u)
+
+
+    @test size(d_w*g_y) == (5,6)
+    @test size(d_e*g_y) == (5,6)
+    @test size(d_s*g_x) == (5,6)
+    @test size(d_n*g_x) == (5,6)
+
+    @test collect(d_w*g_y) ≈ G_w
+    @test collect(d_e*g_y) ≈ G_e
+    @test collect(d_s*g_x) ≈ G_s
+    @test collect(d_n*g_x) ≈ G_n
 end