Mercurial > repos > public > sbplib_julia
comparison DiffOps/test/runtests.jl @ 244:a827568fc251 boundary_conditions
Fix NormalDerivative and add tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 26 Jun 2019 21:22:36 +0200 |
parents | 9819243102dd |
children | 5571d2c5bf0f |
comparison
equal
deleted
inserted
replaced
243:01a67d1b8b5d | 244:a827568fc251 |
---|---|
2 using DiffOps | 2 using DiffOps |
3 using Grids | 3 using Grids |
4 using SbpOperators | 4 using SbpOperators |
5 using RegionIndices | 5 using RegionIndices |
6 using LazyTensors | 6 using LazyTensors |
7 | |
8 @test_broken false | |
9 | 7 |
10 @testset "BoundaryValue" begin | 8 @testset "BoundaryValue" begin |
11 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | 9 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") |
12 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) | 10 g = EquidistantGrid((4,5), (0.0, 0.0), (1.0,1.0)) |
13 | 11 |
54 G_s[:,1] = g_x | 52 G_s[:,1] = g_x |
55 | 53 |
56 G_n = zeros(Float64, (4,5)) | 54 G_n = zeros(Float64, (4,5)) |
57 G_n[:,5] = g_x | 55 G_n[:,5] = g_x |
58 | 56 |
57 @test size(e_w*g_y) == (4,5) | |
58 @test size(e_e*g_y) == (4,5) | |
59 @test size(e_s*g_x) == (4,5) | |
60 @test size(e_n*g_x) == (4,5) | |
61 | |
59 @test collect(e_w*g_y) == G_w | 62 @test collect(e_w*g_y) == G_w |
60 @test collect(e_e*g_y) == G_e | 63 @test collect(e_e*g_y) == G_e |
61 @test collect(e_s*g_x) == G_s | 64 @test collect(e_s*g_x) == G_s |
62 @test collect(e_n*g_x) == G_n | 65 @test collect(e_n*g_x) == G_n |
66 end | |
63 | 67 |
68 @testset "NormalDerivative" begin | |
69 op = readOperator(sbp_operators_path()*"d2_4th.txt",sbp_operators_path()*"h_4th.txt") | |
70 g = EquidistantGrid((5,6), (0.0, 0.0), (4.0,5.0)) | |
71 | |
72 d_w = NormalDerivative(op, g, CartesianBoundary{1,Lower}()) | |
73 d_e = NormalDerivative(op, g, CartesianBoundary{1,Upper}()) | |
74 d_s = NormalDerivative(op, g, CartesianBoundary{2,Lower}()) | |
75 d_n = NormalDerivative(op, g, CartesianBoundary{2,Upper}()) | |
76 | |
77 | |
78 v = evalOn(g, (x,y)-> x^2 + (y-1)^2 + x*y) | |
79 v∂x = evalOn(g, (x,y)-> 2*x + y) | |
80 v∂y = evalOn(g, (x,y)-> 2*(y-1) + x) | |
81 | |
82 @test d_w isa TensorMapping{T,2,1} where T | |
83 @test d_w' isa TensorMapping{T,1,2} where T | |
84 | |
85 @test domain_size(d_w, (3,2)) == (2,) | |
86 @test domain_size(d_e, (3,2)) == (2,) | |
87 @test domain_size(d_s, (3,2)) == (3,) | |
88 @test domain_size(d_n, (3,2)) == (3,) | |
89 | |
90 @test size(d_w'*v) == (6,) | |
91 @test size(d_e'*v) == (6,) | |
92 @test size(d_s'*v) == (5,) | |
93 @test size(d_n'*v) == (5,) | |
94 | |
95 @test collect(d_w'*v) ≈ v∂x[1,:] | |
96 @test collect(d_e'*v) ≈ v∂x[5,:] | |
97 @test collect(d_s'*v) ≈ v∂y[:,1] | |
98 @test collect(d_n'*v) ≈ v∂y[:,6] | |
99 | |
100 | |
101 d_x_l = zeros(Float64, 5) | |
102 d_x_u = zeros(Float64, 5) | |
103 for i ∈ eachindex(d_x_l) | |
104 d_x_l[i] = op.dClosure[i-1] | |
105 d_x_u[i] = -op.dClosure[length(d_x_u)-i] | |
106 end | |
107 | |
108 d_y_l = zeros(Float64, 6) | |
109 d_y_u = zeros(Float64, 6) | |
110 for i ∈ eachindex(d_y_l) | |
111 d_y_l[i] = op.dClosure[i-1] | |
112 d_y_u[i] = -op.dClosure[length(d_y_u)-i] | |
113 end | |
114 | |
115 function ❓(x,y) | |
116 G = zeros(Float64, length(x), length(y)) | |
117 for I ∈ CartesianIndices(G) | |
118 G[I] = x[I[1]]*y[I[2]] | |
119 end | |
120 | |
121 return G | |
122 end | |
123 | |
124 g_x = [1,2,3,4.0,5] | |
125 g_y = [5,4,3,2,1.0,11] | |
126 | |
127 G_w = ❓(d_x_l, g_y) | |
128 G_e = ❓(d_x_u, g_y) | |
129 G_s = ❓(g_x, d_y_l) | |
130 G_n = ❓(g_x, d_y_u) | |
131 | |
132 | |
133 @test size(d_w*g_y) == (5,6) | |
134 @test size(d_e*g_y) == (5,6) | |
135 @test size(d_s*g_x) == (5,6) | |
136 @test size(d_n*g_x) == (5,6) | |
137 | |
138 @test collect(d_w*g_y) ≈ G_w | |
139 @test collect(d_e*g_y) ≈ G_e | |
140 @test collect(d_s*g_x) ≈ G_s | |
141 @test collect(d_n*g_x) ≈ G_n | |
64 end | 142 end |