Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/volume_operator.jl @ 946:469ed954b493 feature/tensormapping_application_promotion
Allow volume_operator, boundary_operator, and constant_interior_scaling_operator to act on arbitrary arrays
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sat, 12 Mar 2022 22:26:23 +0100 |
parents | ae28f1d7ef5e |
children | e79debd10f7d 1ba8a398af9c bbbc31953367 |
line wrap: on
line source
""" volume_operator(grid, inner_stencil, closure_stencils, parity, direction) Creates a volume operator on a `Dim`-dimensional grid acting along the specified coordinate `direction`. The action of the operator is determined by the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the returned operator is the appropriate outer product of a one-dimensional operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the y-direction is `I⊗op⊗I`. """ function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) #TODO: Check that direction <= Dim? # Create 1D volume operator in along coordinate direction op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) # Create 1D IdentityMappings for each coordinate direction one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid))) Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids)) # Formulate the correct outer product sequence of the identity mappings and # the volume operator parts = Base.setindex(Is, op, direction) return foldl(⊗, parts) end """ VolumeOperator{T,N,M,K} <: TensorOperator{T,1} Implements a one-dimensional constant coefficients volume operator """ struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} inner_stencil::Stencil{T,N} closure_stencils::NTuple{M,Stencil{T,K}} size::NTuple{1,Int} parity::Parity end function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity) end closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M LazyTensors.range_size(op::VolumeOperator) = op.size LazyTensors.domain_size(op::VolumeOperator) = op.size function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower}) return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) end function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior}) return apply_stencil(op.inner_stencil, v, Int(i)) end function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper}) return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) end function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) r = getregion(i, closure_size(op), op.size[1]) return LazyTensors.apply(op, v, Index(i, r)) end