view src/SbpOperators/volumeops/volume_operator.jl @ 960:e79debd10f7d feature/variable_derivatives

Merge feature/tensormapping_application_promotion
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 14 Mar 2022 10:14:38 +0100
parents b41180efb6c2 469ed954b493
children 3bb94ce74697
line wrap: on
line source

"""
    volume_operator(grid, inner_stencil, closure_stencils, parity, direction)

Creates a volume operator on a `Dim`-dimensional grid acting along the
specified coordinate `direction`. The action of the operator is determined by
the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the
corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the
returned operator is the appropriate outer product of a one-dimensional
operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the
y-direction is `I⊗op⊗I`.
"""
function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction)
    #TODO: Check that direction <= Dim?

    # Create 1D volume operator in along coordinate direction
    op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity)
    # Create 1D IdentityMappings for each coordinate direction
    one_d_grids = restrict.(Ref(grid), Tuple(1:dimension(grid)))
    Is = IdentityMapping{eltype(grid)}.(size.(one_d_grids))
    # Formulate the correct outer product sequence of the identity mappings and
    # the volume operator
    parts = Base.setindex(Is, op, direction)
    return foldl(⊗, parts)
end

"""
    VolumeOperator{T,N,M,K} <: TensorOperator{T,1}
Implements a one-dimensional constant coefficients volume operator
"""
struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1}
    inner_stencil::Stencil{T,N}
    closure_stencils::NTuple{M,Stencil{T,K}}
    size::NTuple{1,Int}
    parity::Parity
end

function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity)
    return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity)
end

closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M

LazyTensors.range_size(op::VolumeOperator) = op.size
LazyTensors.domain_size(op::VolumeOperator) = op.size

function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower})
    return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i))
end

function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior})
    return apply_stencil(op.inner_stencil, v, Int(i))
end

function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper})
    return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i))
end

function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i)
    return LazyTensors.apply_with_region(op, v, closure_size(op), op.size[1], i)
end