Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/volume_operator.jl @ 1022:bbbc31953367 refactor/sbpoperators/inflation
Introduce an inflate function in lazy tensors and use it in volume_operator and boundary_operator
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 18 Mar 2022 16:57:00 +0100 |
parents | 469ed954b493 |
children | 52f07c77299d |
line wrap: on
line source
""" volume_operator(grid, inner_stencil, closure_stencils, parity, direction) Creates a volume operator on a `Dim`-dimensional grid acting along the specified coordinate `direction`. The action of the operator is determined by the stencils `inner_stencil` and `closure_stencils`. When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned. When `Dim>1`, the returned operator is the appropriate outer product of a one-dimensional operators and `IdentityMapping`s, e.g for `Dim=3` the volume operator in the y-direction is `I⊗op⊗I`. """ function volume_operator(grid::EquidistantGrid, inner_stencil, closure_stencils, parity, direction) #TODO: Check that direction <= Dim? op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) return LazyTensors.inflate(op, size(grid), direction) end # TBD: Should the inflation happen here or should we remove this method and do it at the caller instead? """ VolumeOperator{T,N,M,K} <: TensorOperator{T,1} Implements a one-dimensional constant coefficients volume operator """ struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} inner_stencil::Stencil{T,N} closure_stencils::NTuple{M,Stencil{T,K}} size::NTuple{1,Int} parity::Parity end function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) return VolumeOperator(inner_stencil, Tuple(closure_stencils), size(grid), parity) end closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M LazyTensors.range_size(op::VolumeOperator) = op.size LazyTensors.domain_size(op::VolumeOperator) = op.size function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Lower}) return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) end function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Interior}) return apply_stencil(op.inner_stencil, v, Int(i)) end function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i::Index{Upper}) return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) end function LazyTensors.apply(op::VolumeOperator, v::AbstractVector, i) r = getregion(i, closure_size(op), op.size[1]) return LazyTensors.apply(op, v, Index(i, r)) end # TODO: Move this to LazyTensors when we have the region communication down.