Mercurial > repos > public > sbplib_julia
view src/SbpOperators/quadrature/diagonal_quadrature.jl @ 504:21fba50cb5b0 feature/quadrature_as_outer_product
Use LazyOuterProduct to construct multi-dimensional quadratures. This change allwed to:
- Replace the types Quadrature and InverseQuadrature by functions returning outer products of the 1D operators.
- Avoid convoluted naming of types. DiagonalInnerProduct is now renamed to DiagonalQuadrature, similarly for InverseDiagonalInnerProduct.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 07 Nov 2020 13:07:31 +0100 |
parents | src/SbpOperators/quadrature/diagonal_inner_product.jl@0d93d406c222 |
children | c2f991b819fc |
line wrap: on
line source
""" diagonal_quadrature(g,quadrature_closure) Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as a `TensorMapping`. The one-dimensional operator is a DiagonalQuadrature, while the multi-dimensional operator is the outer-product of the one-dimensional operators in each coordinate direction. """ function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim H = DiagonalQuadrature(restrict(g,1), quadrature_closure) for i ∈ 2:Dim H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure) end return H end export diagonal_quadrature """ DiagonalQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the diagonal quadrature operator `H` of Dim dimension as a TensorMapping """ struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} h::T closure::NTuple{M,T} size::Tuple{Int} end export DiagonalQuadrature function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) end LazyTensors.range_size(H::DiagonalQuadrature) = H.size LazyTensors.domain_size(H::DiagonalQuadrature) = H.size function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T return @inbounds apply(H, v, I) end function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] end function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, I::Index{Upper}) where T N = length(v); return @inbounds H.h*H.closure[N-Int(I)+1]*v[Int(I)] end function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds H.h*v[Int(I)] end function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v); r = getregion(Int(index), closuresize(H), N) i = Index(Int(index), r) return LazyTensors.apply(H, v, i) end LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I) closuresize(H::DiagonalQuadrature{T,M}) where {T,M} = M export closuresize