diff src/SbpOperators/quadrature/diagonal_quadrature.jl @ 504:21fba50cb5b0 feature/quadrature_as_outer_product

Use LazyOuterProduct to construct multi-dimensional quadratures. This change allwed to: - Replace the types Quadrature and InverseQuadrature by functions returning outer products of the 1D operators. - Avoid convoluted naming of types. DiagonalInnerProduct is now renamed to DiagonalQuadrature, similarly for InverseDiagonalInnerProduct.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sat, 07 Nov 2020 13:07:31 +0100
parents src/SbpOperators/quadrature/diagonal_inner_product.jl@0d93d406c222
children c2f991b819fc
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/quadrature/diagonal_quadrature.jl	Sat Nov 07 13:07:31 2020 +0100
@@ -0,0 +1,64 @@
+"""
+diagonal_quadrature(g,quadrature_closure)
+
+Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a DiagonalQuadrature, while
+the multi-dimensional operator is the outer-product of the
+one-dimensional operators in each coordinate direction.
+"""
+function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return H
+end
+export diagonal_quadrature
+
+"""
+    DiagonalQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+
+Implements the diagonal quadrature operator `H` of Dim dimension as a TensorMapping
+"""
+struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+    h::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export DiagonalQuadrature
+
+function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
+end
+
+LazyTensors.range_size(H::DiagonalQuadrature) = H.size
+LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
+
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
+    return @inbounds apply(H, v, I)
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, I::Index{Upper}) where T
+    N = length(v);
+    return @inbounds H.h*H.closure[N-Int(I)+1]*v[Int(I)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T
+    return @inbounds H.h*v[Int(I)]
+end
+
+function LazyTensors.apply(H::DiagonalQuadrature{T},  v::AbstractVector{T}, index::Index{Unknown}) where T
+    N = length(v);
+    r = getregion(Int(index), closuresize(H), N)
+    i = Index(Int(index), r)
+    return LazyTensors.apply(H, v, i)
+end
+
+LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I)
+
+closuresize(H::DiagonalQuadrature{T,M}) where {T,M} = M
+export closuresize