comparison src/SbpOperators/quadrature/diagonal_quadrature.jl @ 504:21fba50cb5b0 feature/quadrature_as_outer_product

Use LazyOuterProduct to construct multi-dimensional quadratures. This change allwed to: - Replace the types Quadrature and InverseQuadrature by functions returning outer products of the 1D operators. - Avoid convoluted naming of types. DiagonalInnerProduct is now renamed to DiagonalQuadrature, similarly for InverseDiagonalInnerProduct.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sat, 07 Nov 2020 13:07:31 +0100
parents src/SbpOperators/quadrature/diagonal_inner_product.jl@0d93d406c222
children c2f991b819fc
comparison
equal deleted inserted replaced
503:fbbb3733650c 504:21fba50cb5b0
1 """
2 diagonal_quadrature(g,quadrature_closure)
3
4 Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as
5 a `TensorMapping`. The one-dimensional operator is a DiagonalQuadrature, while
6 the multi-dimensional operator is the outer-product of the
7 one-dimensional operators in each coordinate direction.
8 """
9 function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
10 H = DiagonalQuadrature(restrict(g,1), quadrature_closure)
11 for i ∈ 2:Dim
12 H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure)
13 end
14 return H
15 end
16 export diagonal_quadrature
17
18 """
19 DiagonalQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
20
21 Implements the diagonal quadrature operator `H` of Dim dimension as a TensorMapping
22 """
23 struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
24 h::T
25 closure::NTuple{M,T}
26 size::Tuple{Int}
27 end
28 export DiagonalQuadrature
29
30 function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
31 return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g))
32 end
33
34 LazyTensors.range_size(H::DiagonalQuadrature) = H.size
35 LazyTensors.domain_size(H::DiagonalQuadrature) = H.size
36
37 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T
38 return @inbounds apply(H, v, I)
39 end
40
41 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T
42 return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
43 end
44
45 function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, I::Index{Upper}) where T
46 N = length(v);
47 return @inbounds H.h*H.closure[N-Int(I)+1]*v[Int(I)]
48 end
49
50 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T
51 return @inbounds H.h*v[Int(I)]
52 end
53
54 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, index::Index{Unknown}) where T
55 N = length(v);
56 r = getregion(Int(index), closuresize(H), N)
57 i = Index(Int(index), r)
58 return LazyTensors.apply(H, v, i)
59 end
60
61 LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I)
62
63 closuresize(H::DiagonalQuadrature{T,M}) where {T,M} = M
64 export closuresize