Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/quadrature/diagonal_quadrature.jl @ 504:21fba50cb5b0 feature/quadrature_as_outer_product
Use LazyOuterProduct to construct multi-dimensional quadratures. This change allwed to:
- Replace the types Quadrature and InverseQuadrature by functions returning outer products of the 1D operators.
- Avoid convoluted naming of types. DiagonalInnerProduct is now renamed to DiagonalQuadrature, similarly for InverseDiagonalInnerProduct.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 07 Nov 2020 13:07:31 +0100 |
parents | src/SbpOperators/quadrature/diagonal_inner_product.jl@0d93d406c222 |
children | c2f991b819fc |
comparison
equal
deleted
inserted
replaced
503:fbbb3733650c | 504:21fba50cb5b0 |
---|---|
1 """ | |
2 diagonal_quadrature(g,quadrature_closure) | |
3 | |
4 Constructs the diagonal quadrature operator `H` on a grid of `Dim` dimensions as | |
5 a `TensorMapping`. The one-dimensional operator is a DiagonalQuadrature, while | |
6 the multi-dimensional operator is the outer-product of the | |
7 one-dimensional operators in each coordinate direction. | |
8 """ | |
9 function diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim | |
10 H = DiagonalQuadrature(restrict(g,1), quadrature_closure) | |
11 for i ∈ 2:Dim | |
12 H = H⊗DiagonalQuadrature(restrict(g,i), quadrature_closure) | |
13 end | |
14 return H | |
15 end | |
16 export diagonal_quadrature | |
17 | |
18 """ | |
19 DiagonalQuadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | |
20 | |
21 Implements the diagonal quadrature operator `H` of Dim dimension as a TensorMapping | |
22 """ | |
23 struct DiagonalQuadrature{T,M} <: TensorMapping{T,1,1} | |
24 h::T | |
25 closure::NTuple{M,T} | |
26 size::Tuple{Int} | |
27 end | |
28 export DiagonalQuadrature | |
29 | |
30 function DiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) | |
31 return DiagonalQuadrature(spacing(g)[1], quadrature_closure, size(g)) | |
32 end | |
33 | |
34 LazyTensors.range_size(H::DiagonalQuadrature) = H.size | |
35 LazyTensors.domain_size(H::DiagonalQuadrature) = H.size | |
36 | |
37 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T | |
38 return @inbounds apply(H, v, I) | |
39 end | |
40 | |
41 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Lower}) where T | |
42 return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] | |
43 end | |
44 | |
45 function LazyTensors.apply(H::DiagonalQuadrature{T},v::AbstractVector{T}, I::Index{Upper}) where T | |
46 N = length(v); | |
47 return @inbounds H.h*H.closure[N-Int(I)+1]*v[Int(I)] | |
48 end | |
49 | |
50 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index{Interior}) where T | |
51 return @inbounds H.h*v[Int(I)] | |
52 end | |
53 | |
54 function LazyTensors.apply(H::DiagonalQuadrature{T}, v::AbstractVector{T}, index::Index{Unknown}) where T | |
55 N = length(v); | |
56 r = getregion(Int(index), closuresize(H), N) | |
57 i = Index(Int(index), r) | |
58 return LazyTensors.apply(H, v, i) | |
59 end | |
60 | |
61 LazyTensors.apply_transpose(H::DiagonalQuadrature{T}, v::AbstractVector{T}, I::Index) where T = LazyTensors.apply(H,v,I) | |
62 | |
63 closuresize(H::DiagonalQuadrature{T,M}) where {T,M} = M | |
64 export closuresize |