Mercurial > repos > public > sbplib_julia
view src/SbpOperators/volumeops/laplace/laplace.jl @ 866:1784b1c0af3e feature/laplace_opset
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Jan 2022 14:44:24 +0100 |
parents | 1970ebceabe4 b4acd25943f4 |
children | 4bd35ba8f34a |
line wrap: on
line source
""" Laplace{T, Dim, TMdiffop} <: TensorMapping{T,Dim,Dim} Laplace(grid, filename; order) Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `TensorMapping`. Additionally, `Laplace` stores the inner product and boundary operators relevant for constructing a SBP finite difference scheme as a `TensorMapping`. `Laplace(grid, filename; order)` creates the Laplace operator defined on `grid`, where the operators are read from TOML. The differential operator is created using `laplace(grid,...)`. Note that all properties of Laplace, excluding the differential operator `Laplace.D`, are abstract types. For performance reasons, they should therefore be accessed via the provided getter functions (e.g `inner_product(::Laplace)`). """ struct Laplace{T, Dim, TMdiffop<:TensorMapping{T,Dim,Dim}} <: TensorMapping{T,Dim,Dim} D::TMdiffop # Differential operator H::TensorMapping # Inner product operator H_inv::TensorMapping # Inverse inner product operator e::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary restriction operators. d::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Normal derivative operators H_boundary::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary quadrature operators end export Laplace function Laplace(grid, filename; order) # Read stencils stencil_set = read_stencil_set(filename; order) # TODO: Removed once we can construct the volume and # boundary operators by op(grid, read_stencil_set(fn; order,...)). D_inner_stecil = parse_stencil(stencil_set["D2"]["inner_stencil"]) D_closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) H_inner_stencils = parse_scalar(stencil_set["H"]["inner"]) H_closure_stencils = parse_tuple(stencil_set["H"]["closure"]) e_closure_stencil = parse_stencil(stencil_set["e"]["closure"]) d_closure_stencil = parse_stencil(stencil_set["d1"]["closure"]) # Volume operators Δ = laplace(grid, D_inner_stecil, D_closure_stencils) H = inner_product(grid, H_inner_stencils, H_closure_stencils) H⁻¹ = inverse_inner_product(grid, H_inner_stencils, H_closure_stencils) # Boundary operator - id pairs ids = boundary_identifiers(grid) n_ids = length(ids) e_pairs = ntuple(i -> ids[i] => boundary_restriction(grid, e_closure_stencil, ids[i]), n_ids) d_pairs = ntuple(i -> ids[i] => normal_derivative(grid, d_closure_stencil, ids[i]), n_ids) Hᵧ_pairs = ntuple(i -> ids[i] => inner_product(boundary_grid(grid, ids[i]), H_inner_stencils, H_closure_stencils), n_ids) return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs)) end # TODO: Consider pretty printing of the following form # Base.show(io::IO, L::Laplace{T, Dim}) where {T,Dim,TM} = print(io, "Laplace{$T, $Dim, $TM}(", L.D, L.H, L.H_inv, L.e, L.d, L.H_boundary, ")") LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) """ inner_product(L::Laplace) Returns the inner product operator associated with `L` """ inner_product(L::Laplace) = L.H export inner_product """ inverse_inner_product(L::Laplace) Returns the inverse of the inner product operator associated with `L` """ inverse_inner_product(L::Laplace) = L.H_inv export inverse_inner_product """ boundary_restriction(L::Laplace, id::BoundaryIdentifier) boundary_restriction(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) boundary_restriction(L::Laplace, ids...) Returns boundary restriction operator(s) associated with `L` for the boundary(s) identified by id(s). """ boundary_restriction(L::Laplace, id::BoundaryIdentifier) = L.e[id] boundary_restriction(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.e[ids[i]],N) boundary_restriction(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.e[ids[i]],N) export boundary_restriction """ normal_derivative(L::Laplace, id::BoundaryIdentifier) normal_derivative(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) normal_derivative(L::Laplace, ids...) Returns normal derivative operator(s) associated with `L` for the boundary(s) identified by id(s). """ normal_derivative(L::Laplace, id::BoundaryIdentifier) = L.d[id] normal_derivative(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.d[ids[i]],N) normal_derivative(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.d[ids[i]],N) export normal_derivative """ boundary_quadrature(L::Laplace, id::BoundaryIdentifier) boundary_quadrature(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) boundary_quadrature(L::Laplace, ids...) Returns boundary quadrature operator(s) associated with `L` for the boundary(s) identified by id(s). """ boundary_quadrature(L::Laplace, id::BoundaryIdentifier) = L.H_boundary[id] boundary_quadrature(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.H_boundary[ids[i]],N) boundary_quadrature(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.H_boundary[ids[i]],N) export boundary_quadrature """ laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) Creates the Laplace operator operator `Δ` as a `TensorMapping` `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` for the points in the closure regions. On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s where the sum is carried out lazily. """ function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) for d = 2:dimension(grid) Δ += second_derivative(grid, inner_stencil, closure_stencils, d) end return Δ end export laplace