Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 866:1784b1c0af3e feature/laplace_opset
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 19 Jan 2022 14:44:24 +0100 |
parents | 1970ebceabe4 b4acd25943f4 |
children | 4bd35ba8f34a |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Fri Jul 02 14:23:33 2021 +0200 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Wed Jan 19 14:44:24 2022 +0100 @@ -1,16 +1,16 @@ """ Laplace{T, Dim, TMdiffop} <: TensorMapping{T,Dim,Dim} - Laplace(grid::AbstractGrid, fn; order) + Laplace(grid, filename; order) Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `TensorMapping`. Additionally, `Laplace` stores the inner product and boundary -operators relevant for constructing a SBP finite difference scheme as `TensorMapping`s. +operators relevant for constructing a SBP finite difference scheme as a `TensorMapping`. -Laplace(grid, fn; order) creates the Laplace operator defined on `grid`, +`Laplace(grid, filename; order)` creates the Laplace operator defined on `grid`, where the operators are read from TOML. The differential operator is created -using `laplace(grid::AbstractGrid,...)`. +using `laplace(grid,...)`. -Note that all properties of Laplace, excluding the Differential operator `D`, are +Note that all properties of Laplace, excluding the differential operator `Laplace.D`, are abstract types. For performance reasons, they should therefore be accessed via the provided getter functions (e.g `inner_product(::Laplace)`). @@ -21,32 +21,34 @@ H_inv::TensorMapping # Inverse inner product operator e::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary restriction operators. d::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Normal derivative operators - H_boundary::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary quadrature operators # TODO: Boundary inner product? + H_boundary::StaticDict{<:BoundaryIdentifier,<:TensorMapping} # Boundary quadrature operators end export Laplace -function Laplace(grid::AbstractGrid, fn; order) - # TODO: Removed once we can construct the volume and - # boundary operators by op(grid, fn; order,...). +function Laplace(grid, filename; order) + # Read stencils - op = read_D2_operator(fn; order) - D_inner_stecil = op.innerStencil - D_closure_stencils = op.closureStencils - H_closure_stencils = op.quadratureClosure - e_closure_stencil = op.eClosure - d_closure_stencil = op.dClosure + stencil_set = read_stencil_set(filename; order) + # TODO: Removed once we can construct the volume and + # boundary operators by op(grid, read_stencil_set(fn; order,...)). + D_inner_stecil = parse_stencil(stencil_set["D2"]["inner_stencil"]) + D_closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) + H_inner_stencils = parse_scalar(stencil_set["H"]["inner"]) + H_closure_stencils = parse_tuple(stencil_set["H"]["closure"]) + e_closure_stencil = parse_stencil(stencil_set["e"]["closure"]) + d_closure_stencil = parse_stencil(stencil_set["d1"]["closure"]) # Volume operators Δ = laplace(grid, D_inner_stecil, D_closure_stencils) - H = inner_product(grid, H_closure_stencils) - H⁻¹ = inverse_inner_product(grid, H_closure_stencils) + H = inner_product(grid, H_inner_stencils, H_closure_stencils) + H⁻¹ = inverse_inner_product(grid, H_inner_stencils, H_closure_stencils) # Boundary operator - id pairs ids = boundary_identifiers(grid) n_ids = length(ids) - e_pairs = ntuple(i -> ids[i] => boundary_restriction(grid,e_closure_stencil,ids[i]),n_ids) - d_pairs = ntuple(i -> ids[i] => normal_derivative(grid,d_closure_stencil,ids[i]),n_ids) - Hᵧ_pairs = ntuple(i -> ids[i] => inner_product(boundary_grid(grid,ids[i]),H_closure_stencils),n_ids) + e_pairs = ntuple(i -> ids[i] => boundary_restriction(grid, e_closure_stencil, ids[i]), n_ids) + d_pairs = ntuple(i -> ids[i] => normal_derivative(grid, d_closure_stencil, ids[i]), n_ids) + Hᵧ_pairs = ntuple(i -> ids[i] => inner_product(boundary_grid(grid, ids[i]), H_inner_stencils, H_closure_stencils), n_ids) return Laplace(Δ, H, H⁻¹, StaticDict(e_pairs), StaticDict(d_pairs), StaticDict(Hᵧ_pairs)) end @@ -60,7 +62,7 @@ """ - inner_product(L::Lapalace) + inner_product(L::Laplace) Returns the inner product operator associated with `L` @@ -70,7 +72,7 @@ """ - inverse_inner_product(L::Lapalace) + inverse_inner_product(L::Laplace) Returns the inverse of the inner product operator associated with `L` @@ -80,65 +82,64 @@ """ - boundary_restriction(L::Lapalace,id::BoundaryIdentifier) - boundary_restriction(L::Lapalace,ids::NTuple{N,BoundaryIdentifier}) - boundary_restriction(L::Lapalace,ids...) + boundary_restriction(L::Laplace, id::BoundaryIdentifier) + boundary_restriction(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) + boundary_restriction(L::Laplace, ids...) Returns boundary restriction operator(s) associated with `L` for the boundary(s) identified by id(s). """ -boundary_restriction(L::Laplace,id::BoundaryIdentifier) = L.e[id] -boundary_restriction(L::Laplace,ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.e[ids[i]],N) -boundary_restriction(L::Laplace,ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.e[ids[i]],N) +boundary_restriction(L::Laplace, id::BoundaryIdentifier) = L.e[id] +boundary_restriction(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.e[ids[i]],N) +boundary_restriction(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.e[ids[i]],N) export boundary_restriction """ - normal_derivative(L::Lapalace,id::BoundaryIdentifier) - normal_derivative(L::Lapalace,ids::NTuple{N,BoundaryIdentifier}) - normal_derivative(L::Lapalace,ids...) + normal_derivative(L::Laplace, id::BoundaryIdentifier) + normal_derivative(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) + normal_derivative(L::Laplace, ids...) Returns normal derivative operator(s) associated with `L` for the boundary(s) identified by id(s). """ -normal_derivative(L::Laplace,id::BoundaryIdentifier) = L.d[id] -normal_derivative(L::Laplace,ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.d[ids[i]],N) -normal_derivative(L::Laplace,ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.d[ids[i]],N) +normal_derivative(L::Laplace, id::BoundaryIdentifier) = L.d[id] +normal_derivative(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.d[ids[i]],N) +normal_derivative(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.d[ids[i]],N) export normal_derivative -# TODO: boundary_inner_product? """ - boundary_quadrature(L::Lapalace,id::BoundaryIdentifier) - boundary_quadrature(L::Lapalace,ids::NTuple{N,BoundaryIdentifier}) - boundary_quadrature(L::Lapalace,ids...) + boundary_quadrature(L::Laplace, id::BoundaryIdentifier) + boundary_quadrature(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) + boundary_quadrature(L::Laplace, ids...) Returns boundary quadrature operator(s) associated with `L` for the boundary(s) identified by id(s). """ -boundary_quadrature(L::Laplace,id::BoundaryIdentifier) = L.H_boundary[id] -boundary_quadrature(L::Laplace,ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.H_boundary[ids[i]],N) -boundary_quadrature(L::Laplace,ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.H_boundary[ids[i]],N) +boundary_quadrature(L::Laplace, id::BoundaryIdentifier) = L.H_boundary[id] +boundary_quadrature(L::Laplace, ids::NTuple{N,BoundaryIdentifier}) where N = ntuple(i->L.H_boundary[ids[i]],N) +boundary_quadrature(L::Laplace, ids::Vararg{BoundaryIdentifier,N}) where N = ntuple(i->L.H_boundary[ids[i]],N) export boundary_quadrature """ - laplace(grid, inner_stencil, closure_stencils) + laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) Creates the Laplace operator operator `Δ` as a `TensorMapping` -`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,N on the N-dimensional -`grid`, using the stencil `inner_stencil` in the interior and a set of stencils -`closure_stencils` for the points in the closure regions. +`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using +the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` +for the points in the closure regions. On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s where the sum is carried out lazily. """ -function laplace(grid::AbstractGrid, inner_stencil, closure_stencils) +function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) for d = 2:dimension(grid) Δ += second_derivative(grid, inner_stencil, closure_stencils, d)