diff src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl @ 634:fb5ac62563aa feature/volume_and_boundary_operators

Integrate feature/quadrature_as_outer_product into branch, before closing feature/quadrature_as_outer_product. (It is now obsolete apart from tests)
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 01 Jan 2021 16:39:57 +0100
parents 04d7b4eb63ef
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl	Fri Jan 01 16:39:57 2021 +0100
@@ -0,0 +1,89 @@
+"""
+inverse_diagonal_quadrature(g,quadrature_closure)
+
+Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as
+a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while
+the multi-dimensional operator is the outer-product of the one-dimensional operators
+in each coordinate direction.
+"""
+function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim
+    Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure)
+    for i ∈ 2:Dim
+        Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure)
+    end
+    return Hi
+end
+export inverse_diagonal_quadrature
+
+
+"""
+    InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1}
+
+Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping`
+The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the
+reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The
+interior stencil has the weight 1.
+"""
+struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1}
+    h_inv::T
+    closure::NTuple{M,T}
+    size::Tuple{Int}
+end
+export InverseDiagonalQuadrature
+
+"""
+    InverseDiagonalQuadrature(g, quadrature_closure)
+
+Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with
+closure given by the reciprocal of `quadrature_closure`.
+"""
+function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure)
+    return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g))
+end
+
+"""
+    domain_size(Hi::InverseDiagonalQuadrature)
+
+The size of an object in the range of `Hi`
+"""
+LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size
+
+"""
+    domain_size(Hi::InverseDiagonalQuadrature)
+
+The size of an object in the domain of `Hi`
+"""
+LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size
+
+"""
+    apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T
+Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions
+`Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first
+be converted to an `Index{R}`.
+"""
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T
+    N = length(v);
+    return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return @inbounds Hi.h_inv*v[Int(i)]
+end
+
+function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T},  v::AbstractVector{T}, i) where T
+    N = length(v);
+    r = getregion(i, closure_size(Hi), N)
+    return LazyTensors.apply(Hi, v, Index(i, r))
+end
+
+LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i)
+
+"""
+    closure_size(Hi)
+Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`.
+"""
+closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} =  M