Mercurial > repos > public > sbplib_julia
view src/SbpOperators/quadrature/inverse_diagonal_quadrature.jl @ 561:04d7b4eb63ef feature/quadrature_as_outer_product
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 30 Nov 2020 16:28:32 +0100 |
parents | src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl@d1929491180b src/SbpOperators/quadrature/inverse_diagonal_inner_product.jl@9b5710ae6587 |
children |
line wrap: on
line source
""" inverse_diagonal_quadrature(g,quadrature_closure) Constructs the inverse `Hi` of a `DiagonalQuadrature` on a grid of `Dim` dimensions as a `TensorMapping`. The one-dimensional operator is a `InverseDiagonalQuadrature`, while the multi-dimensional operator is the outer-product of the one-dimensional operators in each coordinate direction. """ function inverse_diagonal_quadrature(g::EquidistantGrid{Dim}, quadrature_closure) where Dim Hi = InverseDiagonalQuadrature(restrict(g,1), quadrature_closure) for i ∈ 2:Dim Hi = Hi⊗InverseDiagonalQuadrature(restrict(g,i), quadrature_closure) end return Hi end export inverse_diagonal_quadrature """ InverseDiagonalQuadrature{T,M} <: TensorMapping{T,1,1} Implements the inverse of a one-dimensional `DiagonalQuadrature` as a `TensorMapping` The operator is defined by the reciprocal of the quadrature interval length `h_inv`, the reciprocal of the quadrature closure weights `closure` and the number of quadrature intervals `size`. The interior stencil has the weight 1. """ struct InverseDiagonalQuadrature{T<:Real,M} <: TensorMapping{T,1,1} h_inv::T closure::NTuple{M,T} size::Tuple{Int} end export InverseDiagonalQuadrature """ InverseDiagonalQuadrature(g, quadrature_closure) Constructs the `InverseDiagonalQuadrature` on the `EquidistantGrid` `g` with closure given by the reciprocal of `quadrature_closure`. """ function InverseDiagonalQuadrature(g::EquidistantGrid{1}, quadrature_closure) return InverseDiagonalQuadrature(inverse_spacing(g)[1], 1 ./ quadrature_closure, size(g)) end """ domain_size(Hi::InverseDiagonalQuadrature) The size of an object in the range of `Hi` """ LazyTensors.range_size(Hi::InverseDiagonalQuadrature) = Hi.size """ domain_size(Hi::InverseDiagonalQuadrature) The size of an object in the domain of `Hi` """ LazyTensors.domain_size(Hi::InverseDiagonalQuadrature) = Hi.size """ apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T Implements the application `(Hi*v)[i]` an `Index{R}` where `R` is one of the regions `Lower`,`Interior`,`Upper`. If `i` is another type of index (e.g an `Int`) it will first be converted to an `Index{R}`. """ function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Lower}) where T return @inbounds Hi.h_inv*Hi.closure[Int(i)]*v[Int(i)] end function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Upper}) where T N = length(v); return @inbounds Hi.h_inv*Hi.closure[N-Int(i)+1]*v[Int(i)] end function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i::Index{Interior}) where T return @inbounds Hi.h_inv*v[Int(i)] end function LazyTensors.apply(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T N = length(v); r = getregion(i, closure_size(Hi), N) return LazyTensors.apply(Hi, v, Index(i, r)) end LazyTensors.apply_transpose(Hi::InverseDiagonalQuadrature{T}, v::AbstractVector{T}, i) where T = LazyTensors.apply(Hi,v,i) """ closure_size(Hi) Returns the size of the closure stencil of a InverseDiagonalQuadrature `Hi`. """ closure_size(Hi::InverseDiagonalQuadrature{T,M}) where {T,M} = M