Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/volume_operator.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators
NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 19:14:39 +0100 |
parents | |
children | 332f65c1abf3 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/volumeops/volume_operator.jl Sat Dec 05 19:14:39 2020 +0100 @@ -0,0 +1,60 @@ +""" + volume_operator(grid,inner_stencil,closure_stencils,parity,direction) +Creates a volume operator on a `Dim`-dimensional grid acting along the +specified coordinate `direction`. The action of the operator is determined by the +stencils `inner_stencil` and `closure_stencils`. +When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned. +When `Dim>1`, the `VolumeOperator` `op` is inflated by the outer product +of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`, +the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`. +""" +function volume_operator(grid::EquidistantGrid{Dim,T}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, parity, direction) where {Dim,T,M} + # Create 1D volume operator in along coordinate direction + op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) + # Create 1D IdentityMappings for each coordinate direction + one_d_grids = restrict.(Ref(grid), Tuple(1:Dim)) + Is = IdentityMapping{T}.(size.(one_d_grids)) + # Formulate the correct outer product sequence of the identity mappings and + # the volume operator + parts = Base.setindex(Is, op, direction) + return foldl(⊗, parts) +end +export volume_operator + +""" + VolumeOperator{T,N,M,K} <: TensorOperator{T,1} +Implements a one-dimensional constant coefficients volume operator +""" +struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} + inner_stencil::Stencil{T,N} + closure_stencils::NTuple{M,Stencil{T,K}} + size::NTuple{1,Int} + parity::Parity +end +export VolumeOperator + +function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) + return VolumeOperator(inner_stencil, closure_stencils, size(grid), parity) +end + +closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M + +LazyTensors.range_size(op::VolumeOperator) = op.size +LazyTensors.domain_size(op::VolumeOperator) = op.size + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) +end + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return apply_stencil(op.inner_stencil, v, Int(i)) +end + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T + return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) +end + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T + r = getregion(i, closure_size(op), op.size[1]) + return LazyTensors.apply(op, v, Index(i, r)) +end