diff src/SbpOperators/volumeops/volume_operator.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators

NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sat, 05 Dec 2020 19:14:39 +0100
parents
children 332f65c1abf3
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/SbpOperators/volumeops/volume_operator.jl	Sat Dec 05 19:14:39 2020 +0100
@@ -0,0 +1,60 @@
+"""
+    volume_operator(grid,inner_stencil,closure_stencils,parity,direction)
+Creates a volume operator on a `Dim`-dimensional grid acting along the
+specified coordinate `direction`. The action of the operator is determined by the
+stencils `inner_stencil` and `closure_stencils`.
+When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned.
+When `Dim>1`, the `VolumeOperator` `op` is inflated by the outer product
+of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`,
+the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`.
+"""
+function volume_operator(grid::EquidistantGrid{Dim,T}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, parity, direction) where {Dim,T,M}
+    # Create 1D volume operator in along coordinate direction
+    op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity)
+    # Create 1D IdentityMappings for each coordinate direction
+    one_d_grids = restrict.(Ref(grid), Tuple(1:Dim))
+    Is = IdentityMapping{T}.(size.(one_d_grids))
+    # Formulate the correct outer product sequence of the identity mappings and
+    # the volume operator
+    parts = Base.setindex(Is, op, direction)
+    return foldl(⊗, parts)
+end
+export volume_operator
+
+"""
+    VolumeOperator{T,N,M,K} <: TensorOperator{T,1}
+Implements a one-dimensional constant coefficients volume operator
+"""
+struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1}
+    inner_stencil::Stencil{T,N}
+    closure_stencils::NTuple{M,Stencil{T,K}}
+    size::NTuple{1,Int}
+    parity::Parity
+end
+export VolumeOperator
+
+function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity)
+    return VolumeOperator(inner_stencil, closure_stencils, size(grid), parity)
+end
+
+closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M
+
+LazyTensors.range_size(op::VolumeOperator) = op.size
+LazyTensors.domain_size(op::VolumeOperator) = op.size
+
+function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T
+    return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i))
+end
+
+function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T
+    return apply_stencil(op.inner_stencil, v, Int(i))
+end
+
+function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T
+    return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i))
+end
+
+function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T
+    r = getregion(i, closure_size(op), op.size[1])
+    return LazyTensors.apply(op, v, Index(i, r))
+end