Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/volume_operator.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators
NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 19:14:39 +0100 |
parents | |
children | 332f65c1abf3 |
comparison
equal
deleted
inserted
replaced
610:e40e7439d1b4 | 611:e71f2f81b5f8 |
---|---|
1 """ | |
2 volume_operator(grid,inner_stencil,closure_stencils,parity,direction) | |
3 Creates a volume operator on a `Dim`-dimensional grid acting along the | |
4 specified coordinate `direction`. The action of the operator is determined by the | |
5 stencils `inner_stencil` and `closure_stencils`. | |
6 When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned. | |
7 When `Dim>1`, the `VolumeOperator` `op` is inflated by the outer product | |
8 of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`, | |
9 the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`. | |
10 """ | |
11 function volume_operator(grid::EquidistantGrid{Dim,T}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, parity, direction) where {Dim,T,M} | |
12 # Create 1D volume operator in along coordinate direction | |
13 op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) | |
14 # Create 1D IdentityMappings for each coordinate direction | |
15 one_d_grids = restrict.(Ref(grid), Tuple(1:Dim)) | |
16 Is = IdentityMapping{T}.(size.(one_d_grids)) | |
17 # Formulate the correct outer product sequence of the identity mappings and | |
18 # the volume operator | |
19 parts = Base.setindex(Is, op, direction) | |
20 return foldl(⊗, parts) | |
21 end | |
22 export volume_operator | |
23 | |
24 """ | |
25 VolumeOperator{T,N,M,K} <: TensorOperator{T,1} | |
26 Implements a one-dimensional constant coefficients volume operator | |
27 """ | |
28 struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} | |
29 inner_stencil::Stencil{T,N} | |
30 closure_stencils::NTuple{M,Stencil{T,K}} | |
31 size::NTuple{1,Int} | |
32 parity::Parity | |
33 end | |
34 export VolumeOperator | |
35 | |
36 function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) | |
37 return VolumeOperator(inner_stencil, closure_stencils, size(grid), parity) | |
38 end | |
39 | |
40 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M | |
41 | |
42 LazyTensors.range_size(op::VolumeOperator) = op.size | |
43 LazyTensors.domain_size(op::VolumeOperator) = op.size | |
44 | |
45 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T | |
46 return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) | |
47 end | |
48 | |
49 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T | |
50 return apply_stencil(op.inner_stencil, v, Int(i)) | |
51 end | |
52 | |
53 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T | |
54 return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) | |
55 end | |
56 | |
57 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T | |
58 r = getregion(i, closure_size(op), op.size[1]) | |
59 return LazyTensors.apply(op, v, Index(i, r)) | |
60 end |