comparison src/SbpOperators/volumeops/volume_operator.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators

NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Sat, 05 Dec 2020 19:14:39 +0100
parents
children 332f65c1abf3
comparison
equal deleted inserted replaced
610:e40e7439d1b4 611:e71f2f81b5f8
1 """
2 volume_operator(grid,inner_stencil,closure_stencils,parity,direction)
3 Creates a volume operator on a `Dim`-dimensional grid acting along the
4 specified coordinate `direction`. The action of the operator is determined by the
5 stencils `inner_stencil` and `closure_stencils`.
6 When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned.
7 When `Dim>1`, the `VolumeOperator` `op` is inflated by the outer product
8 of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`,
9 the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`.
10 """
11 function volume_operator(grid::EquidistantGrid{Dim,T}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, parity, direction) where {Dim,T,M}
12 # Create 1D volume operator in along coordinate direction
13 op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity)
14 # Create 1D IdentityMappings for each coordinate direction
15 one_d_grids = restrict.(Ref(grid), Tuple(1:Dim))
16 Is = IdentityMapping{T}.(size.(one_d_grids))
17 # Formulate the correct outer product sequence of the identity mappings and
18 # the volume operator
19 parts = Base.setindex(Is, op, direction)
20 return foldl(⊗, parts)
21 end
22 export volume_operator
23
24 """
25 VolumeOperator{T,N,M,K} <: TensorOperator{T,1}
26 Implements a one-dimensional constant coefficients volume operator
27 """
28 struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1}
29 inner_stencil::Stencil{T,N}
30 closure_stencils::NTuple{M,Stencil{T,K}}
31 size::NTuple{1,Int}
32 parity::Parity
33 end
34 export VolumeOperator
35
36 function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity)
37 return VolumeOperator(inner_stencil, closure_stencils, size(grid), parity)
38 end
39
40 closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M
41
42 LazyTensors.range_size(op::VolumeOperator) = op.size
43 LazyTensors.domain_size(op::VolumeOperator) = op.size
44
45 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T
46 return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i))
47 end
48
49 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T
50 return apply_stencil(op.inner_stencil, v, Int(i))
51 end
52
53 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T
54 return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i))
55 end
56
57 function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T
58 r = getregion(i, closure_size(op), op.size[1])
59 return LazyTensors.apply(op, v, Index(i, r))
60 end