Mercurial > repos > public > sbplib_julia
changeset 611:e71f2f81b5f8 feature/volume_and_boundary_operators
NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 19:14:39 +0100 |
parents | e40e7439d1b4 |
children | 1db945cba3a2 |
files | src/SbpOperators/SbpOperators.jl src/SbpOperators/laplace/laplace.jl src/SbpOperators/laplace/secondderivative.jl src/SbpOperators/volumeops/volume_operator.jl |
diffstat | 4 files changed, 79 insertions(+), 86 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/SbpOperators.jl Sat Dec 05 18:12:31 2020 +0100 +++ b/src/SbpOperators/SbpOperators.jl Sat Dec 05 19:14:39 2020 +0100 @@ -8,6 +8,7 @@ include("constantstenciloperator.jl") include("d2.jl") include("readoperator.jl") +include("volumeops/volume_operator.jl") include("laplace/secondderivative.jl") include("laplace/laplace.jl") include("quadrature/diagonal_inner_product.jl")
--- a/src/SbpOperators/laplace/laplace.jl Sat Dec 05 18:12:31 2020 +0100 +++ b/src/SbpOperators/laplace/laplace.jl Sat Dec 05 19:14:39 2020 +0100 @@ -1,49 +1,18 @@ -export Laplace -""" - Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the Laplace operator `L` in Dim dimensions as a tensor operator -The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative -tensor operators. -""" -#export quadrature, inverse_quadrature, boundary_quadrature, boundary_value, normal_derivative -struct Laplace{Dim,T,N,M,K} <: TensorMapping{T,Dim,Dim} - D2::NTuple{Dim,SecondDerivative{T,N,M,K}} -end - -function Laplace(g::EquidistantGrid{Dim}, innerStencil, closureStencils) where Dim - D2 = () - for i ∈ 1:Dim - D2 = (D2..., SecondDerivative(restrict(g,i), innerStencil, closureStencils)) +# """ +# Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} +# +# Implements the Laplace operator `L` in Dim dimensions as a tensor operator +# The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative +# tensor operators. +# """ +function Laplace(grid::EquidistantGrid{Dim}, innerStencil, closureStencils) where Dim + Δ = SecondDerivative(grid, innerStencil, closureStencils, 1) + for d = 2:Dim + Δ += SecondDerivative(grid, innerStencil, closureStencils, d) end - - return Laplace(D2) + return Δ end - -LazyTensors.range_size(L::Laplace) = getindex.(range_size.(L.D2),1) -LazyTensors.domain_size(L::Laplace) = getindex.(domain_size.(L.D2),1) - -function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim} - error("not implemented") -end - -# u = L*v -function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, i) where T - @inbounds u = LazyTensors.apply(L.D2[1],v,i) - return u -end - -function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, i, j) where T - # 2nd x-derivative - @inbounds vx = view(v, :, Int(j)) - @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , i) - - # 2nd y-derivative - @inbounds vy = view(v, Int(i), :) - @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , j) - - return uᵢ -end +export Laplace # quadrature(L::Laplace) = Quadrature(L.op, L.grid) # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
--- a/src/SbpOperators/laplace/secondderivative.jl Sat Dec 05 18:12:31 2020 +0100 +++ b/src/SbpOperators/laplace/secondderivative.jl Sat Dec 05 19:14:39 2020 +0100 @@ -1,43 +1,6 @@ -""" - SecondDerivative{T<:Real,N,M,K} <: TensorOperator{T,1} -Implements the Laplace tensor operator `L` with constant grid spacing and coefficients -in 1D dimension -""" - -struct SecondDerivative{T,N,M,K} <: TensorMapping{T,1,1} - h_inv::T # The grid spacing could be included in the stencil already. Preferable? - innerStencil::Stencil{T,N} - closureStencils::NTuple{M,Stencil{T,K}} - size::NTuple{1,Int} -end -export SecondDerivative - -function SecondDerivative(grid::EquidistantGrid{1}, innerStencil, closureStencils) - h_inv = inverse_spacing(grid)[1] - return SecondDerivative(h_inv, innerStencil, closureStencils, size(grid)) +function SecondDerivative(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils, direction) where Dim + h_inv = inverse_spacing(grid)[direction] + return volume_operator(grid, scale(inner_stencil,h_inv^2), scale.(closure_stencils,h_inv^2), size(grid), even, direction) end - -LazyTensors.range_size(D2::SecondDerivative) = D2.size -LazyTensors.domain_size(D2::SecondDerivative) = D2.size - -# Apply for different regions Lower/Interior/Upper or Unknown region -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Lower}) where T - return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.closureStencils[Int(i)], v, Int(i)) -end - -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Interior}) where T - return @inbounds D2.h_inv*D2.h_inv*apply_stencil(D2.innerStencil, v, Int(i)) -end - -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i::Index{Upper}) where T - N = length(v) # TODO: Use domain_size here instead? N = domain_size(D2,size(v)) - return @inbounds D2.h_inv*D2.h_inv*apply_stencil_backwards(D2.closureStencils[N-Int(i)+1], v, Int(i)) -end - -function LazyTensors.apply(D2::SecondDerivative{T}, v::AbstractVector{T}, i) where T - N = length(v) # TODO: Use domain_size here instead? - r = getregion(i, closuresize(D2), N) - return LazyTensors.apply(D2, v, Index(i, r)) -end - -closuresize(D2::SecondDerivative{T,N,M,K}) where {T<:Real,N,M,K} = M +SecondDerivative(grid::EquidistantGrid{1}, inner_stencil, closure_stencils) = SecondDerivative(grid,inner_stencil,closure_stencils,1) +export SecondDerivative
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/SbpOperators/volumeops/volume_operator.jl Sat Dec 05 19:14:39 2020 +0100 @@ -0,0 +1,60 @@ +""" + volume_operator(grid,inner_stencil,closure_stencils,parity,direction) +Creates a volume operator on a `Dim`-dimensional grid acting along the +specified coordinate `direction`. The action of the operator is determined by the +stencils `inner_stencil` and `closure_stencils`. +When `Dim=1`, the corresponding `VolumeOperator` tensor mapping is returned. +When `Dim>1`, the `VolumeOperator` `op` is inflated by the outer product +of `IdentityMappings` in orthogonal coordinate directions, e.g for `Dim=3`, +the boundary restriction operator in the y-direction direction is `Ix⊗op⊗Iz`. +""" +function volume_operator(grid::EquidistantGrid{Dim,T}, inner_stencil::Stencil{T}, closure_stencils::NTuple{M,Stencil{T}}, parity, direction) where {Dim,T,M} + # Create 1D volume operator in along coordinate direction + op = VolumeOperator(restrict(grid, direction), inner_stencil, closure_stencils, parity) + # Create 1D IdentityMappings for each coordinate direction + one_d_grids = restrict.(Ref(grid), Tuple(1:Dim)) + Is = IdentityMapping{T}.(size.(one_d_grids)) + # Formulate the correct outer product sequence of the identity mappings and + # the volume operator + parts = Base.setindex(Is, op, direction) + return foldl(⊗, parts) +end +export volume_operator + +""" + VolumeOperator{T,N,M,K} <: TensorOperator{T,1} +Implements a one-dimensional constant coefficients volume operator +""" +struct VolumeOperator{T,N,M,K} <: TensorMapping{T,1,1} + inner_stencil::Stencil{T,N} + closure_stencils::NTuple{M,Stencil{T,K}} + size::NTuple{1,Int} + parity::Parity +end +export VolumeOperator + +function VolumeOperator(grid::EquidistantGrid{1}, inner_stencil, closure_stencils, parity) + return VolumeOperator(inner_stencil, closure_stencils, size(grid), parity) +end + +closure_size(::VolumeOperator{T,N,M}) where {T,N,M} = M + +LazyTensors.range_size(op::VolumeOperator) = op.size +LazyTensors.domain_size(op::VolumeOperator) = op.size + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Lower}) where T + return @inbounds apply_stencil(op.closure_stencils[Int(i)], v, Int(i)) +end + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Interior}) where T + return apply_stencil(op.inner_stencil, v, Int(i)) +end + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i::Index{Upper}) where T + return @inbounds Int(op.parity)*apply_stencil_backwards(op.closure_stencils[op.size[1]-Int(i)+1], v, Int(i)) +end + +function LazyTensors.apply(op::VolumeOperator{T}, v::AbstractVector{T}, i) where T + r = getregion(i, closure_size(op), op.size[1]) + return LazyTensors.apply(op, v, Index(i, r)) +end