Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/laplace/laplace.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators
NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 19:14:39 +0100 |
parents | 011ca1639153 |
children | d9324671b412 |
line wrap: on
line diff
--- a/src/SbpOperators/laplace/laplace.jl Sat Dec 05 18:12:31 2020 +0100 +++ b/src/SbpOperators/laplace/laplace.jl Sat Dec 05 19:14:39 2020 +0100 @@ -1,49 +1,18 @@ -export Laplace -""" - Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the Laplace operator `L` in Dim dimensions as a tensor operator -The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative -tensor operators. -""" -#export quadrature, inverse_quadrature, boundary_quadrature, boundary_value, normal_derivative -struct Laplace{Dim,T,N,M,K} <: TensorMapping{T,Dim,Dim} - D2::NTuple{Dim,SecondDerivative{T,N,M,K}} -end - -function Laplace(g::EquidistantGrid{Dim}, innerStencil, closureStencils) where Dim - D2 = () - for i ∈ 1:Dim - D2 = (D2..., SecondDerivative(restrict(g,i), innerStencil, closureStencils)) +# """ +# Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} +# +# Implements the Laplace operator `L` in Dim dimensions as a tensor operator +# The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative +# tensor operators. +# """ +function Laplace(grid::EquidistantGrid{Dim}, innerStencil, closureStencils) where Dim + Δ = SecondDerivative(grid, innerStencil, closureStencils, 1) + for d = 2:Dim + Δ += SecondDerivative(grid, innerStencil, closureStencils, d) end - - return Laplace(D2) + return Δ end - -LazyTensors.range_size(L::Laplace) = getindex.(range_size.(L.D2),1) -LazyTensors.domain_size(L::Laplace) = getindex.(domain_size.(L.D2),1) - -function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim} - error("not implemented") -end - -# u = L*v -function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, i) where T - @inbounds u = LazyTensors.apply(L.D2[1],v,i) - return u -end - -function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, i, j) where T - # 2nd x-derivative - @inbounds vx = view(v, :, Int(j)) - @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , i) - - # 2nd y-derivative - @inbounds vy = view(v, Int(i), :) - @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , j) - - return uᵢ -end +export Laplace # quadrature(L::Laplace) = Quadrature(L.op, L.grid) # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)