Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/laplace/laplace.jl @ 611:e71f2f81b5f8 feature/volume_and_boundary_operators
NOT WORKING: Draft implementation of VolumeOperator and make SecondDerivative specialize it. Reformulate Laplace for the new SecondDerivative.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sat, 05 Dec 2020 19:14:39 +0100 |
parents | 011ca1639153 |
children | d9324671b412 |
comparison
equal
deleted
inserted
replaced
610:e40e7439d1b4 | 611:e71f2f81b5f8 |
---|---|
1 # """ | |
2 # Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | |
3 # | |
4 # Implements the Laplace operator `L` in Dim dimensions as a tensor operator | |
5 # The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative | |
6 # tensor operators. | |
7 # """ | |
8 function Laplace(grid::EquidistantGrid{Dim}, innerStencil, closureStencils) where Dim | |
9 Δ = SecondDerivative(grid, innerStencil, closureStencils, 1) | |
10 for d = 2:Dim | |
11 Δ += SecondDerivative(grid, innerStencil, closureStencils, d) | |
12 end | |
13 return Δ | |
14 end | |
1 export Laplace | 15 export Laplace |
2 """ | |
3 Laplace{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | |
4 | |
5 Implements the Laplace operator `L` in Dim dimensions as a tensor operator | |
6 The multi-dimensional tensor operator consists of a tuple of 1D SecondDerivative | |
7 tensor operators. | |
8 """ | |
9 #export quadrature, inverse_quadrature, boundary_quadrature, boundary_value, normal_derivative | |
10 struct Laplace{Dim,T,N,M,K} <: TensorMapping{T,Dim,Dim} | |
11 D2::NTuple{Dim,SecondDerivative{T,N,M,K}} | |
12 end | |
13 | |
14 function Laplace(g::EquidistantGrid{Dim}, innerStencil, closureStencils) where Dim | |
15 D2 = () | |
16 for i ∈ 1:Dim | |
17 D2 = (D2..., SecondDerivative(restrict(g,i), innerStencil, closureStencils)) | |
18 end | |
19 | |
20 return Laplace(D2) | |
21 end | |
22 | |
23 LazyTensors.range_size(L::Laplace) = getindex.(range_size.(L.D2),1) | |
24 LazyTensors.domain_size(L::Laplace) = getindex.(domain_size.(L.D2),1) | |
25 | |
26 function LazyTensors.apply(L::Laplace{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Any,Dim}) where {T,Dim} | |
27 error("not implemented") | |
28 end | |
29 | |
30 # u = L*v | |
31 function LazyTensors.apply(L::Laplace{1,T}, v::AbstractVector{T}, i) where T | |
32 @inbounds u = LazyTensors.apply(L.D2[1],v,i) | |
33 return u | |
34 end | |
35 | |
36 function LazyTensors.apply(L::Laplace{2,T}, v::AbstractArray{T,2}, i, j) where T | |
37 # 2nd x-derivative | |
38 @inbounds vx = view(v, :, Int(j)) | |
39 @inbounds uᵢ = LazyTensors.apply(L.D2[1], vx , i) | |
40 | |
41 # 2nd y-derivative | |
42 @inbounds vy = view(v, Int(i), :) | |
43 @inbounds uᵢ += LazyTensors.apply(L.D2[2], vy , j) | |
44 | |
45 return uᵢ | |
46 end | |
47 | 16 |
48 # quadrature(L::Laplace) = Quadrature(L.op, L.grid) | 17 # quadrature(L::Laplace) = Quadrature(L.op, L.grid) |
49 # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) | 18 # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) |
50 # boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) | 19 # boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) |
51 # normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) | 20 # normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) |