Mercurial > repos > public > sbplib_julia
diff test/SbpOperators/boundaryops/normal_derivative_test.jl @ 772:bea2feebbeca operator_storage_array_of_table
Fix boundaryops tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 15 Jul 2021 00:28:09 +0200 |
parents | 6114274447f5 |
children | 35be8253de89 47425442bbc5 |
line wrap: on
line diff
--- a/test/SbpOperators/boundaryops/normal_derivative_test.jl Thu Jul 15 00:19:27 2021 +0200 +++ b/test/SbpOperators/boundaryops/normal_derivative_test.jl Thu Jul 15 00:28:09 2021 +0200 @@ -11,21 +11,21 @@ g_1D = EquidistantGrid(11, 0.0, 1.0) g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) @testset "normal_derivative" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) + d_closure = parse_stencil(stencil_set["d1"]["closure"]) @testset "1D" begin - d_l = normal_derivative(g_1D, op.dClosure, Lower()) - @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) + d_l = normal_derivative(g_1D, d_closure, Lower()) + @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) @test d_l isa BoundaryOperator{T,Lower} where T @test d_l isa TensorMapping{T,0,1} where T end @testset "2D" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) - d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) + d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) Ix = IdentityMapping{Float64}((size(g_2D)[1],)) Iy = IdentityMapping{Float64}((size(g_2D)[2],)) - d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) - d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) + d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) + d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) @test d_w == d_l⊗Iy @test d_n == Ix⊗d_r @test d_w isa TensorMapping{T,1,2} where T @@ -38,11 +38,12 @@ v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) # TODO: Test for higher order polynomials? @testset "2nd order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) - d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) - d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) - d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) - d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_closure = parse_stencil(stencil_set["d1"]["closure"]) + d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) + d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) + d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) + d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) @test d_w*v ≈ v∂x[1,:] atol = 1e-13 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 @@ -51,11 +52,12 @@ end @testset "4th order" begin - op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) - d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) - d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) - d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) - d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) + stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) + d_closure = parse_stencil(stencil_set["d1"]["closure"]) + d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) + d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) + d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) + d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) @test d_w*v ≈ v∂x[1,:] atol = 1e-13 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13