comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 772:bea2feebbeca operator_storage_array_of_table

Fix boundaryops tests
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 15 Jul 2021 00:28:09 +0200
parents 6114274447f5
children 35be8253de89 47425442bbc5
comparison
equal deleted inserted replaced
771:d0c1d0b4da52 772:bea2feebbeca
9 9
10 @testset "normal_derivative" begin 10 @testset "normal_derivative" begin
11 g_1D = EquidistantGrid(11, 0.0, 1.0) 11 g_1D = EquidistantGrid(11, 0.0, 1.0)
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) 12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0))
13 @testset "normal_derivative" begin 13 @testset "normal_derivative" begin
14 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) 14 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
15 d_closure = parse_stencil(stencil_set["d1"]["closure"])
15 @testset "1D" begin 16 @testset "1D" begin
16 d_l = normal_derivative(g_1D, op.dClosure, Lower()) 17 d_l = normal_derivative(g_1D, d_closure, Lower())
17 @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) 18 @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}())
18 @test d_l isa BoundaryOperator{T,Lower} where T 19 @test d_l isa BoundaryOperator{T,Lower} where T
19 @test d_l isa TensorMapping{T,0,1} where T 20 @test d_l isa TensorMapping{T,0,1} where T
20 end 21 end
21 @testset "2D" begin 22 @testset "2D" begin
22 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) 23 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
23 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) 24 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
24 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}())
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) 25 Ix = IdentityMapping{Float64}((size(g_2D)[1],))
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) 26 Iy = IdentityMapping{Float64}((size(g_2D)[2],))
27 d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) 27 d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower())
28 d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) 28 d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper())
29 @test d_w == d_l⊗Iy 29 @test d_w == d_l⊗Iy
30 @test d_n == Ix⊗d_r 30 @test d_n == Ix⊗d_r
31 @test d_w isa TensorMapping{T,1,2} where T 31 @test d_w isa TensorMapping{T,1,2} where T
32 @test d_n isa TensorMapping{T,1,2} where T 32 @test d_n isa TensorMapping{T,1,2} where T
33 end 33 end
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) 36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y)
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) 37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y)
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x)
39 # TODO: Test for higher order polynomials? 39 # TODO: Test for higher order polynomials?
40 @testset "2nd order" begin 40 @testset "2nd order" begin
41 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
42 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) 42 d_closure = parse_stencil(stencil_set["d1"]["closure"])
43 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) 43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
44 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) 44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}())
45 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) 45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
46 47
47 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 48 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
48 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 49 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
49 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 50 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
50 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 51 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13
51 end 52 end
52 53
53 @testset "4th order" begin 54 @testset "4th order" begin
54 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) 55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
55 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) 56 d_closure = parse_stencil(stencil_set["d1"]["closure"])
56 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) 57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}())
57 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) 58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}())
58 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) 59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}())
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}())
59 61
60 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 62 @test d_w*v ≈ v∂x[1,:] atol = 1e-13
61 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 63 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13
62 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 64 @test d_s*v ≈ v∂y[:,1] atol = 1e-13
63 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 65 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13