Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 772:bea2feebbeca operator_storage_array_of_table
Fix boundaryops tests
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 15 Jul 2021 00:28:09 +0200 |
parents | 6114274447f5 |
children | 35be8253de89 47425442bbc5 |
comparison
equal
deleted
inserted
replaced
771:d0c1d0b4da52 | 772:bea2feebbeca |
---|---|
9 | 9 |
10 @testset "normal_derivative" begin | 10 @testset "normal_derivative" begin |
11 g_1D = EquidistantGrid(11, 0.0, 1.0) | 11 g_1D = EquidistantGrid(11, 0.0, 1.0) |
12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | 12 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) |
13 @testset "normal_derivative" begin | 13 @testset "normal_derivative" begin |
14 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 14 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
15 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | |
15 @testset "1D" begin | 16 @testset "1D" begin |
16 d_l = normal_derivative(g_1D, op.dClosure, Lower()) | 17 d_l = normal_derivative(g_1D, d_closure, Lower()) |
17 @test d_l == normal_derivative(g_1D, op.dClosure, CartesianBoundary{1,Lower}()) | 18 @test d_l == normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) |
18 @test d_l isa BoundaryOperator{T,Lower} where T | 19 @test d_l isa BoundaryOperator{T,Lower} where T |
19 @test d_l isa TensorMapping{T,0,1} where T | 20 @test d_l isa TensorMapping{T,0,1} where T |
20 end | 21 end |
21 @testset "2D" begin | 22 @testset "2D" begin |
22 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 23 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) |
23 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | 24 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) |
24 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | |
25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) | 25 Ix = IdentityMapping{Float64}((size(g_2D)[1],)) |
26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) | 26 Iy = IdentityMapping{Float64}((size(g_2D)[2],)) |
27 d_l = normal_derivative(restrict(g_2D,1),op.dClosure,Lower()) | 27 d_l = normal_derivative(restrict(g_2D,1),d_closure,Lower()) |
28 d_r = normal_derivative(restrict(g_2D,2),op.dClosure,Upper()) | 28 d_r = normal_derivative(restrict(g_2D,2),d_closure,Upper()) |
29 @test d_w == d_l⊗Iy | 29 @test d_w == d_l⊗Iy |
30 @test d_n == Ix⊗d_r | 30 @test d_n == Ix⊗d_r |
31 @test d_w isa TensorMapping{T,1,2} where T | 31 @test d_w isa TensorMapping{T,1,2} where T |
32 @test d_n isa TensorMapping{T,1,2} where T | 32 @test d_n isa TensorMapping{T,1,2} where T |
33 end | 33 end |
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | 36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) |
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) | 37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) |
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) |
39 # TODO: Test for higher order polynomials? | 39 # TODO: Test for higher order polynomials? |
40 @testset "2nd order" begin | 40 @testset "2nd order" begin |
41 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
42 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | 42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
43 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) | 43 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) |
44 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) | 44 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) |
45 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | 45 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) |
46 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | |
46 | 47 |
47 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | 48 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 |
48 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | 49 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 |
49 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | 50 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 |
50 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | 51 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 |
51 end | 52 end |
52 | 53 |
53 @testset "4th order" begin | 54 @testset "4th order" begin |
54 op = read_D2_operator(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 55 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
55 d_w = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Lower}()) | 56 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
56 d_e = normal_derivative(g_2D, op.dClosure, CartesianBoundary{1,Upper}()) | 57 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) |
57 d_s = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Lower}()) | 58 d_e = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Upper}()) |
58 d_n = normal_derivative(g_2D, op.dClosure, CartesianBoundary{2,Upper}()) | 59 d_s = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Lower}()) |
60 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | |
59 | 61 |
60 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 | 62 @test d_w*v ≈ v∂x[1,:] atol = 1e-13 |
61 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 | 63 @test d_e*v ≈ -v∂x[end,:] atol = 1e-13 |
62 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 | 64 @test d_s*v ≈ v∂y[:,1] atol = 1e-13 |
63 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 | 65 @test d_n*v ≈ -v∂y[:,end] atol = 1e-13 |