Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1858:4a9be96f2569 feature/documenter_logo
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 12 Jan 2025 21:18:44 +0100 |
parents | b5690ab5f0b8 |
children | f3d7e2d7a43f |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Fri Jan 21 15:23:08 2022 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Sun Jan 12 21:18:44 2025 +0100 @@ -1,21 +1,127 @@ """ - laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) + Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} + +The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a +`LazyTensor`. +""" +struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} + D::TM # Difference operator + stencil_set::StencilSet # Stencil set of the operator +end -Creates the Laplace operator operator `Δ` as a `TensorMapping` +""" + Laplace(g::Grid, stencil_set::StencilSet) + +Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. -`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using -the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` -for the points in the closure regions. +See also [`laplace`](@ref). +""" +function Laplace(g::Grid, stencil_set::StencilSet) + Δ = laplace(g, stencil_set) + return Laplace(Δ, stencil_set) +end -On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a -multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s -where the sum is carried out lazily. +LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) +LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) +LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) + +# TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. +# Base.show(io::IO, L::Laplace) = ... + """ -function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) - Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) - for d = 2:dimension(grid) - Δ += second_derivative(grid, inner_stencil, closure_stencils, d) + laplace(g::Grid, stencil_set) + +Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. + +`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The +approximation depends on the type of grid and the stencil set. + +See also: [`second_derivative`](@ref). +""" +function laplace end +function laplace(g::TensorGrid, stencil_set) + # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) + # Δᵢ = laplace(gᵢ, stencil_set) + # LazyTensors.inflate(Δᵢ, size(g), i) + # end + + Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) + for d = 2:ndims(g) + Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end -export laplace +laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) + +""" + sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) + +The operators required to construct the SAT for imposing a Dirichlet +condition. `H_tuning` and `R_tuning` are used to specify the strength of the +penalty. + +See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). +""" +function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) + id = boundary(bc) + set = Δ.stencil_set + H⁻¹ = inverse_inner_product(g,set) + Hᵧ = inner_product(boundary_grid(g, id), set) + e = boundary_restriction(g, set, id) + d = normal_derivative(g, set, id) + B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) + penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ + return penalty_tensor, e +end + +""" + sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) + +The operators required to construct the SAT for imposing a Neumann condition. + +See also: [`sat`](@ref), [`NeumannCondition`](@ref). +""" +function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) + id = boundary(bc) + set = Δ.stencil_set + H⁻¹ = inverse_inner_product(g,set) + Hᵧ = inner_product(boundary_grid(g, id), set) + e = boundary_restriction(g, set, id) + d = normal_derivative(g, set, id) + + penalty_tensor = -H⁻¹∘e'∘Hᵧ + return penalty_tensor, d +end + +""" + positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) + +Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive +definite with respect to the boundary quadrature. Here `d` is the normal +derivative and `e` is the boundary restriction operator. `B` can then be used +to form a symmetric and energy stable penalty for a Dirichlet condition. The +parameters `H_tuning` and `R_tuning` are used to specify the strength of the +penalty and must be greater than 1. For details we refer to +<https://doi.org/10.1016/j.jcp.2020.109294> +""" +function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) + @assert(H_tuning ≥ 1.) + @assert(R_tuning ≥ 1.) + Nτ_H, τ_R = positivity_limits(Δ,g,b) + return H_tuning*Nτ_H + R_tuning*τ_R +end + +function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) + h = spacing(g) + θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) + θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) + + τ_H = one(eltype(Δ))/(h*θ_H) + τ_R = one(eltype(Δ))/(h*θ_R) + return τ_H, τ_R +end + +function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) + τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) + return τ_H*ndims(g), τ_R +end