Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1858:4a9be96f2569 feature/documenter_logo
Merge default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Sun, 12 Jan 2025 21:18:44 +0100 |
parents | b5690ab5f0b8 |
children | f3d7e2d7a43f |
comparison
equal
deleted
inserted
replaced
1857:ffde7dad9da5 | 1858:4a9be96f2569 |
---|---|
1 """ | 1 """ |
2 laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) | 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} |
3 | 3 |
4 Creates the Laplace operator operator `Δ` as a `TensorMapping` | 4 The Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a |
5 `LazyTensor`. | |
6 """ | |
7 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} | |
8 D::TM # Difference operator | |
9 stencil_set::StencilSet # Stencil set of the operator | |
10 end | |
5 | 11 |
6 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using | 12 """ |
7 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` | 13 Laplace(g::Grid, stencil_set::StencilSet) |
8 for the points in the closure regions. | |
9 | 14 |
10 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a | 15 Creates the `Laplace` operator `Δ` on `g` given `stencil_set`. |
11 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s | 16 |
12 where the sum is carried out lazily. | 17 See also [`laplace`](@ref). |
13 """ | 18 """ |
14 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 19 function Laplace(g::Grid, stencil_set::StencilSet) |
15 Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) | 20 Δ = laplace(g, stencil_set) |
16 for d = 2:dimension(grid) | 21 return Laplace(Δ, stencil_set) |
17 Δ += second_derivative(grid, inner_stencil, closure_stencils, d) | 22 end |
23 | |
24 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) | |
25 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) | |
26 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) | |
27 | |
28 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. | |
29 # Base.show(io::IO, L::Laplace) = ... | |
30 | |
31 """ | |
32 laplace(g::Grid, stencil_set) | |
33 | |
34 Creates the Laplace operator operator `Δ` as a `LazyTensor` on `g`. | |
35 | |
36 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The | |
37 approximation depends on the type of grid and the stencil set. | |
38 | |
39 See also: [`second_derivative`](@ref). | |
40 """ | |
41 function laplace end | |
42 function laplace(g::TensorGrid, stencil_set) | |
43 # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) | |
44 # Δᵢ = laplace(gᵢ, stencil_set) | |
45 # LazyTensors.inflate(Δᵢ, size(g), i) | |
46 # end | |
47 | |
48 Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) | |
49 for d = 2:ndims(g) | |
50 Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) | |
18 end | 51 end |
19 return Δ | 52 return Δ |
20 end | 53 end |
21 export laplace | 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) |
55 | |
56 """ | |
57 sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning, R_tuning) | |
58 | |
59 The operators required to construct the SAT for imposing a Dirichlet | |
60 condition. `H_tuning` and `R_tuning` are used to specify the strength of the | |
61 penalty. | |
62 | |
63 See also: [`sat`](@ref), [`DirichletCondition`](@ref), [`positivity_decomposition`](@ref). | |
64 """ | |
65 function sat_tensors(Δ::Laplace, g::Grid, bc::DirichletCondition; H_tuning = 1., R_tuning = 1.) | |
66 id = boundary(bc) | |
67 set = Δ.stencil_set | |
68 H⁻¹ = inverse_inner_product(g,set) | |
69 Hᵧ = inner_product(boundary_grid(g, id), set) | |
70 e = boundary_restriction(g, set, id) | |
71 d = normal_derivative(g, set, id) | |
72 B = positivity_decomposition(Δ, g, boundary(bc); H_tuning, R_tuning) | |
73 penalty_tensor = H⁻¹∘(d' - B*e')∘Hᵧ | |
74 return penalty_tensor, e | |
75 end | |
76 | |
77 """ | |
78 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | |
79 | |
80 The operators required to construct the SAT for imposing a Neumann condition. | |
81 | |
82 See also: [`sat`](@ref), [`NeumannCondition`](@ref). | |
83 """ | |
84 function sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | |
85 id = boundary(bc) | |
86 set = Δ.stencil_set | |
87 H⁻¹ = inverse_inner_product(g,set) | |
88 Hᵧ = inner_product(boundary_grid(g, id), set) | |
89 e = boundary_restriction(g, set, id) | |
90 d = normal_derivative(g, set, id) | |
91 | |
92 penalty_tensor = -H⁻¹∘e'∘Hᵧ | |
93 return penalty_tensor, d | |
94 end | |
95 | |
96 """ | |
97 positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) | |
98 | |
99 Constructs the scalar `B` such that `d' - 1/2*B*e'` is symmetric positive | |
100 definite with respect to the boundary quadrature. Here `d` is the normal | |
101 derivative and `e` is the boundary restriction operator. `B` can then be used | |
102 to form a symmetric and energy stable penalty for a Dirichlet condition. The | |
103 parameters `H_tuning` and `R_tuning` are used to specify the strength of the | |
104 penalty and must be greater than 1. For details we refer to | |
105 <https://doi.org/10.1016/j.jcp.2020.109294> | |
106 """ | |
107 function positivity_decomposition(Δ::Laplace, g::Grid, b::BoundaryIdentifier; H_tuning, R_tuning) | |
108 @assert(H_tuning ≥ 1.) | |
109 @assert(R_tuning ≥ 1.) | |
110 Nτ_H, τ_R = positivity_limits(Δ,g,b) | |
111 return H_tuning*Nτ_H + R_tuning*τ_R | |
112 end | |
113 | |
114 function positivity_limits(Δ::Laplace, g::EquidistantGrid, b::BoundaryIdentifier) | |
115 h = spacing(g) | |
116 θ_H = parse_scalar(Δ.stencil_set["H"]["closure"][1]) | |
117 θ_R = parse_scalar(Δ.stencil_set["D2"]["positivity"]["theta_R"]) | |
118 | |
119 τ_H = one(eltype(Δ))/(h*θ_H) | |
120 τ_R = one(eltype(Δ))/(h*θ_R) | |
121 return τ_H, τ_R | |
122 end | |
123 | |
124 function positivity_limits(Δ::Laplace, g::TensorGrid, b::BoundaryIdentifier) | |
125 τ_H, τ_R = positivity_limits(Δ, g.grids[grid_id(b)], b) | |
126 return τ_H*ndims(g), τ_R | |
127 end |