Mercurial > repos > public > sbplib_julia
diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1291:356ec6a72974 refactor/grids
Implement changes in SbpOperators
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 07 Mar 2023 09:48:00 +0100 |
parents | dfbd62c7eb09 |
children | e94ddef5e72f |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Tue Mar 07 09:21:27 2023 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Tue Mar 07 09:48:00 2023 +0100 @@ -3,7 +3,7 @@ Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a `LazyTensor`. Additionally `Laplace` stores the `StencilSet` -used to construct the `LazyTensor `. +used to construct the `LazyTensor`. """ struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} D::TM # Difference operator @@ -17,11 +17,9 @@ See also [`laplace`](@ref). """ -function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) - inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) - closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) - Δ = laplace(grid, inner_stencil,closure_stencils) - return Laplace(Δ,stencil_set) +function Laplace(g::Grid, stencil_set::StencilSet) + Δ = laplace(g, stencil_set) + return Laplace(Δ, stencil_set) end LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) @@ -32,24 +30,26 @@ # Base.show(io::IO, L::Laplace) = ... """ - laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) - -Creates the Laplace operator operator `Δ` as a `LazyTensor` + laplace(g::Grid, stencil_set) -`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using -the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` -for the points in the closure regions. +Creates the Laplace operator operator `Δ` as a `LazyTensor` on the given grid -On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a -multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s -where the sum is carried out lazily. +`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The +approximation depends on the type of grid and the stencil set. See also: [`second_derivative`](@ref). """ -function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) - Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) - for d = 2:ndims(grid) - Δ += second_derivative(grid, inner_stencil, closure_stencils, d) +function laplace end +function laplace(g::TensorGrid, stencil_set) + # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) + # Δᵢ = laplace(gᵢ, stencil_set) + # LazyTensors.inflate(Δᵢ, size(g), i) + # end + + Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) + for d = 2:ndims(g) + Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) end return Δ end +laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set)