diff src/SbpOperators/volumeops/laplace/laplace.jl @ 1291:356ec6a72974 refactor/grids

Implement changes in SbpOperators
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 07 Mar 2023 09:48:00 +0100
parents dfbd62c7eb09
children e94ddef5e72f
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl	Tue Mar 07 09:21:27 2023 +0100
+++ b/src/SbpOperators/volumeops/laplace/laplace.jl	Tue Mar 07 09:48:00 2023 +0100
@@ -3,7 +3,7 @@
 
 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a
 `LazyTensor`. Additionally `Laplace` stores the `StencilSet`
-used to construct the `LazyTensor `.
+used to construct the `LazyTensor`.
 """
 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim}
     D::TM       # Difference operator
@@ -17,11 +17,9 @@
 
 See also [`laplace`](@ref).
 """
-function Laplace(grid::EquidistantGrid, stencil_set::StencilSet)
-    inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"])
-    closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"])
-    Δ = laplace(grid, inner_stencil,closure_stencils)
-    return Laplace(Δ,stencil_set)
+function Laplace(g::Grid, stencil_set::StencilSet)
+    Δ = laplace(g, stencil_set)
+    return Laplace(Δ, stencil_set)
 end
 
 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D)
@@ -32,24 +30,26 @@
 # Base.show(io::IO, L::Laplace) = ...
 
 """
-    laplace(grid::EquidistantGrid, inner_stencil, closure_stencils)
-
-Creates the Laplace operator operator `Δ` as a `LazyTensor`
+    laplace(g::Grid, stencil_set)
 
-`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using
-the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils`
-for the points in the closure regions.
+Creates the Laplace operator operator `Δ` as a `LazyTensor` on the given grid
 
-On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a
-multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s
-where the sum is carried out lazily.
+`Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The
+approximation depends on the type of grid and the stencil set.
 
 See also: [`second_derivative`](@ref).
 """
-function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils)
-    Δ = second_derivative(grid, inner_stencil, closure_stencils, 1)
-    for d = 2:ndims(grid)
-        Δ += second_derivative(grid, inner_stencil, closure_stencils, d)
+function laplace end
+function laplace(g::TensorGrid, stencil_set)
+    # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ)
+    #     Δᵢ = laplace(gᵢ, stencil_set)
+    #     LazyTensors.inflate(Δᵢ, size(g), i)
+    # end
+
+    Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1)
+    for d = 2:ndims(g)
+        Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d)
     end
     return Δ
 end
+laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set)