comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1291:356ec6a72974 refactor/grids

Implement changes in SbpOperators
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 07 Mar 2023 09:48:00 +0100
parents dfbd62c7eb09
children e94ddef5e72f
comparison
equal deleted inserted replaced
1290:31d0b7638304 1291:356ec6a72974
1 """ 1 """
2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim}
3 3
4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a
5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet`
6 used to construct the `LazyTensor `. 6 used to construct the `LazyTensor`.
7 """ 7 """
8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim}
9 D::TM # Difference operator 9 D::TM # Difference operator
10 stencil_set::StencilSet # Stencil set of the operator 10 stencil_set::StencilSet # Stencil set of the operator
11 end 11 end
15 15
16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`.
17 17
18 See also [`laplace`](@ref). 18 See also [`laplace`](@ref).
19 """ 19 """
20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) 20 function Laplace(g::Grid, stencil_set::StencilSet)
21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) 21 Δ = laplace(g, stencil_set)
22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) 22 return Laplace(Δ, stencil_set)
23 Δ = laplace(grid, inner_stencil,closure_stencils)
24 return Laplace(Δ,stencil_set)
25 end 23 end
26 24
27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) 25 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D)
28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) 26 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D)
29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) 27 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...)
30 28
31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. 29 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented.
32 # Base.show(io::IO, L::Laplace) = ... 30 # Base.show(io::IO, L::Laplace) = ...
33 31
34 """ 32 """
35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) 33 laplace(g::Grid, stencil_set)
36 34
37 Creates the Laplace operator operator `Δ` as a `LazyTensor` 35 Creates the Laplace operator operator `Δ` as a `LazyTensor` on the given grid
38 36
39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using 37 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The
40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` 38 approximation depends on the type of grid and the stencil set.
41 for the points in the closure regions.
42
43 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a
44 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s
45 where the sum is carried out lazily.
46 39
47 See also: [`second_derivative`](@ref). 40 See also: [`second_derivative`](@ref).
48 """ 41 """
49 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) 42 function laplace end
50 Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) 43 function laplace(g::TensorGrid, stencil_set)
51 for d = 2:ndims(grid) 44 # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ)
52 Δ += second_derivative(grid, inner_stencil, closure_stencils, d) 45 # Δᵢ = laplace(gᵢ, stencil_set)
46 # LazyTensors.inflate(Δᵢ, size(g), i)
47 # end
48
49 Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1)
50 for d = 2:ndims(g)
51 Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d)
53 end 52 end
54 return Δ 53 return Δ
55 end 54 end
55 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set)