comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 648:d6edde60909b feature/volume_and_boundary_operators

Fix typo in documentation and remove obsolete out-commented code.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 08 Jan 2021 16:05:53 +0100
parents a85db383484f
children f3a0d1f7d842 1accc3e051d0
comparison
equal deleted inserted replaced
647:f13d45c10f55 648:d6edde60909b
1 """ 1 """
2 Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) 2 Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils)
3 3
4 Creates the Laplace ooperator operator `Δ` as a `TensorMapping` 4 Creates the Laplace operator operator `Δ` as a `TensorMapping`
5 5
6 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using 6 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using
7 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` 7 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils`
8 for the points in the closure regions. 8 for the points in the closure regions.
9 9
16 Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d) 16 Δ += SecondDerivative(grid, inner_stencil, closure_stencils, d)
17 end 17 end
18 return Δ 18 return Δ
19 end 19 end
20 export Laplace 20 export Laplace
21
22 # quadrature(L::Laplace) = Quadrature(L.op, L.grid)
23 # inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
24 # boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
25 # normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
26 # boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
27
28 # """
29 # BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
30 #
31 # Implements the boundary operator `q` as a TensorOperator
32 # """
33 # export BoundaryQuadrature
34 # struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
35 # op::D2{T,N,M,K}
36 # grid::EquidistantGrid{2}
37 # bId::CartesianBoundary
38 # end
39 #
40 #
41 # # TODO: Make this independent of dimension
42 # function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
43 # h = spacing(q.grid)[3-dim(q.bId)]
44 # N = size(v)
45 # return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
46 # end
47 #
48 # LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
49 #
50 #
51 #
52 #
53 # struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
54 #
55 # function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
56 # e = boundary_value(L, Bid())
57 # d = normal_derivative(L, Bid())
58 # Hᵧ = boundary_quadrature(L, Bid())
59 # H⁻¹ = inverse_quadrature(L)
60 # return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
61 # end
62 #
63 # struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
64 # tau::Float64
65 # end
66 #
67 # function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
68 # e = boundary_value(L, Bid())
69 # d = normal_derivative(L, Bid())
70 # Hᵧ = boundary_quadrature(L, Bid())
71 # H⁻¹ = inverse_quadrature(L)
72 # return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
73 # # Need to handle scalar multiplication and addition of TensorMapping
74 # end
75
76 # function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
77 # return apply(s.L, v, i) +
78 # sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) +
79 # sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) +
80 # sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) +
81 # sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i)
82 # end