changeset 648:d6edde60909b feature/volume_and_boundary_operators

Fix typo in documentation and remove obsolete out-commented code.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 08 Jan 2021 16:05:53 +0100
parents f13d45c10f55
children 351937390162
files src/SbpOperators/volumeops/laplace/laplace.jl
diffstat 1 files changed, 1 insertions(+), 63 deletions(-) [+]
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl	Mon Jan 04 18:38:21 2021 +0100
+++ b/src/SbpOperators/volumeops/laplace/laplace.jl	Fri Jan 08 16:05:53 2021 +0100
@@ -1,7 +1,7 @@
 """
     Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils)
 
-Creates the Laplace ooperator operator `Δ` as a `TensorMapping`
+Creates the Laplace operator operator `Δ` as a `TensorMapping`
 
 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using
 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils`
@@ -18,65 +18,3 @@
     return Δ
 end
 export Laplace
-
-# quadrature(L::Laplace) = Quadrature(L.op, L.grid)
-# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid)
-# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId)
-# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId)
-# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId)
-
-# """
-#     BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
-#
-# Implements the boundary operator `q` as a TensorOperator
-# """
-# export BoundaryQuadrature
-# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1}
-#     op::D2{T,N,M,K}
-#     grid::EquidistantGrid{2}
-#     bId::CartesianBoundary
-# end
-#
-#
-# # TODO: Make this independent of dimension
-# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T
-#     h = spacing(q.grid)[3-dim(q.bId)]
-#     N = size(v)
-#     return apply_quadrature(q.op, h, v[I[1]], I[1], N[1])
-# end
-#
-# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I)
-#
-#
-#
-#
-# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end
-#
-# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid}
-#     e = boundary_value(L, Bid())
-#     d = normal_derivative(L, Bid())
-#     Hᵧ = boundary_quadrature(L, Bid())
-#     H⁻¹ = inverse_quadrature(L)
-#     return (-H⁻¹*e*Hᵧ*(d'*v - g))[I]
-# end
-#
-# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition
-#     tau::Float64
-# end
-#
-# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid}
-#     e = boundary_value(L, Bid())
-#     d = normal_derivative(L, Bid())
-#     Hᵧ = boundary_quadrature(L, Bid())
-#     H⁻¹ = inverse_quadrature(L)
-#     return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I]
-#     # Need to handle scalar multiplication and addition of TensorMapping
-# end
-
-# function apply(s::MyWaveEq{D},  v::AbstractArray{T,D}, i::CartesianIndex{D}) where D
-    #   return apply(s.L, v, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau),  v, s.g_w, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau),  v, s.g_e, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau),  v, s.g_s, i) +
-# 		sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau),  v, s.g_n, i)
-# end