Mercurial > repos > public > sbplib_julia
changeset 648:d6edde60909b feature/volume_and_boundary_operators
Fix typo in documentation and remove obsolete out-commented code.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 08 Jan 2021 16:05:53 +0100 |
parents | f13d45c10f55 |
children | 351937390162 |
files | src/SbpOperators/volumeops/laplace/laplace.jl |
diffstat | 1 files changed, 1 insertions(+), 63 deletions(-) [+] |
line wrap: on
line diff
--- a/src/SbpOperators/volumeops/laplace/laplace.jl Mon Jan 04 18:38:21 2021 +0100 +++ b/src/SbpOperators/volumeops/laplace/laplace.jl Fri Jan 08 16:05:53 2021 +0100 @@ -1,7 +1,7 @@ """ Laplace(grid::EquidistantGrid{Dim}, inner_stencil, closure_stencils) -Creates the Laplace ooperator operator `Δ` as a `TensorMapping` +Creates the Laplace operator operator `Δ` as a `TensorMapping` `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` @@ -18,65 +18,3 @@ return Δ end export Laplace - -# quadrature(L::Laplace) = Quadrature(L.op, L.grid) -# inverse_quadrature(L::Laplace) = InverseQuadrature(L.op, L.grid) -# boundary_value(L::Laplace, bId::CartesianBoundary) = BoundaryValue(L.op, L.grid, bId) -# normal_derivative(L::Laplace, bId::CartesianBoundary) = NormalDerivative(L.op, L.grid, bId) -# boundary_quadrature(L::Laplace, bId::CartesianBoundary) = BoundaryQuadrature(L.op, L.grid, bId) - -# """ -# BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} -# -# Implements the boundary operator `q` as a TensorOperator -# """ -# export BoundaryQuadrature -# struct BoundaryQuadrature{T,N,M,K} <: TensorOperator{T,1} -# op::D2{T,N,M,K} -# grid::EquidistantGrid{2} -# bId::CartesianBoundary -# end -# -# -# # TODO: Make this independent of dimension -# function LazyTensors.apply(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T -# h = spacing(q.grid)[3-dim(q.bId)] -# N = size(v) -# return apply_quadrature(q.op, h, v[I[1]], I[1], N[1]) -# end -# -# LazyTensors.apply_transpose(q::BoundaryQuadrature{T}, v::AbstractArray{T,1}, I::NTuple{1,Index}) where T = LazyTensors.apply(q,v,I) -# -# -# -# -# struct Neumann{Bid<:BoundaryIdentifier} <: BoundaryCondition end -# -# function sat(L::Laplace{2,T}, bc::Neumann{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, I::CartesianIndex{2}) where {T,Bid} -# e = boundary_value(L, Bid()) -# d = normal_derivative(L, Bid()) -# Hᵧ = boundary_quadrature(L, Bid()) -# H⁻¹ = inverse_quadrature(L) -# return (-H⁻¹*e*Hᵧ*(d'*v - g))[I] -# end -# -# struct Dirichlet{Bid<:BoundaryIdentifier} <: BoundaryCondition -# tau::Float64 -# end -# -# function sat(L::Laplace{2,T}, bc::Dirichlet{Bid}, v::AbstractArray{T,2}, g::AbstractVector{T}, i::CartesianIndex{2}) where {T,Bid} -# e = boundary_value(L, Bid()) -# d = normal_derivative(L, Bid()) -# Hᵧ = boundary_quadrature(L, Bid()) -# H⁻¹ = inverse_quadrature(L) -# return (-H⁻¹*(tau/h*e + d)*Hᵧ*(e'*v - g))[I] -# # Need to handle scalar multiplication and addition of TensorMapping -# end - -# function apply(s::MyWaveEq{D}, v::AbstractArray{T,D}, i::CartesianIndex{D}) where D - # return apply(s.L, v, i) + -# sat(s.L, Dirichlet{CartesianBoundary{1,Lower}}(s.tau), v, s.g_w, i) + -# sat(s.L, Dirichlet{CartesianBoundary{1,Upper}}(s.tau), v, s.g_e, i) + -# sat(s.L, Dirichlet{CartesianBoundary{2,Lower}}(s.tau), v, s.g_s, i) + -# sat(s.L, Dirichlet{CartesianBoundary{2,Upper}}(s.tau), v, s.g_n, i) -# end