Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1484:8d60d045c2a2 feature/boundary_conditions
Add todo and minor edits to variable naming and docstring
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Mon, 25 Dec 2023 19:25:10 +0100 |
parents | 35840a0681d1 |
children | 19cdec9c21cb |
comparison
equal
deleted
inserted
replaced
1483:abc5cc0aec94 | 1484:8d60d045c2a2 |
---|---|
51 end | 51 end |
52 return Δ | 52 return Δ |
53 end | 53 end |
54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) | 54 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) |
55 | 55 |
56 # TODO: Add sat_tensor for Diirichlet condition | |
56 | 57 |
57 """ | 58 """ |
58 sat_tensors(Δ::Laplace, g::TensorGrid, bc::NeumannCondition) | 59 sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
59 | 60 |
60 Returns the LazyTensors required to impose a Neumann condition | 61 The operators required to construct the SAT for imposing Neumann condition |
61 SAT = sat_op(d*u - g) | 62 |
62 | 63 |
63 See also: [`sat`,`NeumannCondition`](@ref). | 64 See also: [`sat`,`NeumannCondition`](@ref). |
64 """ | 65 """ |
65 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) | 66 function BoundaryConditions.sat_tensors(Δ::Laplace, g::Grid, bc::NeumannCondition) |
66 id = bc.id | 67 id = bc.id |
68 H⁻¹ = inverse_inner_product(g,set) | 69 H⁻¹ = inverse_inner_product(g,set) |
69 Hᵧ = inner_product(boundary_grid(g, id), set) | 70 Hᵧ = inner_product(boundary_grid(g, id), set) |
70 e = boundary_restriction(g, set, id) | 71 e = boundary_restriction(g, set, id) |
71 d = normal_derivative(g, set, id) | 72 d = normal_derivative(g, set, id) |
72 | 73 |
73 sat_tensor = H⁻¹∘e'∘Hᵧ | 74 sat_op = H⁻¹∘e'∘Hᵧ |
74 return sat_tensor, d | 75 return sat_op, d |
75 end | 76 end |