Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 2057:8a2a0d678d6f feature/lazy_tensors/pretty_printing
Merge default
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Tue, 10 Feb 2026 22:41:19 +0100 |
| parents | 471a948cd2b2 |
| children | f3d7e2d7a43f 0e93fc7fb2e2 |
comparison
equal
deleted
inserted
replaced
| 1110:c0bff9f6e0fb | 2057:8a2a0d678d6f |
|---|---|
| 1 using Test | 1 using Test |
| 2 | 2 |
| 3 using Sbplib.SbpOperators | 3 using Diffinitive.SbpOperators |
| 4 using Sbplib.Grids | 4 using Diffinitive.Grids |
| 5 using Sbplib.LazyTensors | 5 using Diffinitive.LazyTensors |
| 6 using Sbplib.RegionIndices | 6 using Diffinitive.RegionIndices |
| 7 import Sbplib.SbpOperators.BoundaryOperator | 7 import Diffinitive.SbpOperators.BoundaryOperator |
| 8 | 8 |
| 9 @testset "normal_derivative" begin | 9 @testset "normal_derivative" begin |
| 10 g_1D = EquidistantGrid(11, 0.0, 1.0) | 10 g_1D = equidistant_grid(0.0, 1.0, 11) |
| 11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | 11 g_2D = equidistant_grid((0.0, 0.0), (1.0,1.0), 11, 12) |
| 12 @testset "normal_derivative" begin | 12 @testset "normal_derivative" begin |
| 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
| 14 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | |
| 15 @testset "1D" begin | 14 @testset "1D" begin |
| 16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) | 15 d_l = normal_derivative(g_1D, stencil_set, LowerBoundary()) |
| 17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) | 16 @test d_l == normal_derivative(g_1D, stencil_set, LowerBoundary()) |
| 18 @test d_l isa BoundaryOperator{T,Lower} where T | 17 @test d_l isa BoundaryOperator{T,LowerBoundary} where T |
| 19 @test d_l isa LazyTensor{T,0,1} where T | 18 @test d_l isa LazyTensor{T,0,1} where T |
| 20 end | 19 end |
| 21 @testset "2D" begin | 20 @testset "2D" begin |
| 22 d_w = normal_derivative(g_2D, d_closure, CartesianBoundary{1,Lower}()) | 21 d_w = normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) |
| 23 d_n = normal_derivative(g_2D, d_closure, CartesianBoundary{2,Upper}()) | 22 d_n = normal_derivative(g_2D, stencil_set, CartesianBoundary{2,UpperBoundary}()) |
| 24 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) | 23 Ix = IdentityTensor{Float64}((size(g_2D)[1],)) |
| 25 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) | 24 Iy = IdentityTensor{Float64}((size(g_2D)[2],)) |
| 26 d_l = normal_derivative(restrict(g_2D,1),d_closure,CartesianBoundary{1,Lower}()) | 25 d_l = normal_derivative(g_2D.grids[1], stencil_set, LowerBoundary()) |
| 27 d_r = normal_derivative(restrict(g_2D,2),d_closure,CartesianBoundary{1,Upper}()) | 26 d_r = normal_derivative(g_2D.grids[2], stencil_set, UpperBoundary()) |
| 28 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,Lower}()) | 27 @test d_w == normal_derivative(g_2D, stencil_set, CartesianBoundary{1,LowerBoundary}()) |
| 29 @test d_w == d_l⊗Iy | 28 @test d_w == d_l⊗Iy |
| 30 @test d_n == Ix⊗d_r | 29 @test d_n == Ix⊗d_r |
| 31 @test d_w isa LazyTensor{T,1,2} where T | 30 @test d_w isa LazyTensor{T,1,2} where T |
| 32 @test d_n isa LazyTensor{T,1,2} where T | 31 @test d_n isa LazyTensor{T,1,2} where T |
| 33 end | 32 end |
| 34 end | 33 end |
| 35 @testset "Accuracy" begin | 34 @testset "Accuracy" begin |
| 36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | 35 v = eval_on(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) |
| 37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) | 36 v∂x = eval_on(g_2D, (x,y)-> 2*x + y) |
| 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | 37 v∂y = eval_on(g_2D, (x,y)-> 2*(y-1) + x) |
| 39 # TODO: Test for higher order polynomials? | 38 # TODO: Test for higher order polynomials? |
| 40 @testset "2nd order" begin | 39 @testset "2nd order" begin |
| 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 40 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
| 42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 41 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) |
| 43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | |
| 44 | 42 |
| 45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 43 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
| 46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 44 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
| 47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 45 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
| 48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 46 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
| 49 end | 47 end |
| 50 | 48 |
| 51 @testset "4th order" begin | 49 @testset "4th order" begin |
| 52 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 50 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
| 53 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 51 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(stencil_set), boundary_identifiers(g_2D)) |
| 54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | |
| 55 | 52 |
| 56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 53 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
| 57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 54 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
| 58 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 55 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
| 59 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 56 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
