comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 949:7168d28b03e3 feature/laplace_opset

Remove unnecessary parentheses
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 14 Mar 2022 08:03:40 +0100
parents af670581b464
children 97e9a8337a86
comparison
equal deleted inserted replaced
948:1484073dfe27 949:7168d28b03e3
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x)
39 # TODO: Test for higher order polynomials? 39 # TODO: Test for higher order polynomials?
40 @testset "2nd order" begin 40 @testset "2nd order" begin
41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2)
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 42 d_closure = parse_stencil(stencil_set["d1"]["closure"])
43 (d_w, d_e, d_s, d_n) = 43 d_w, d_e, d_s, d_n =
44 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) 44 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D))
45 45
46 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 46 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
47 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 47 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
48 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 48 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13
50 end 50 end
51 51
52 @testset "4th order" begin 52 @testset "4th order" begin
53 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) 53 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4)
54 d_closure = parse_stencil(stencil_set["d1"]["closure"]) 54 d_closure = parse_stencil(stencil_set["d1"]["closure"])
55 (d_w, d_e, d_s, d_n) = 55 d_w, d_e, d_s, d_n =
56 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D)) 56 map(id -> normal_derivative(g_2D, d_closure, id), boundary_identifiers(g_2D))
57 57
58 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 58 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13
59 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 59 @test d_e*v ≈ v∂x[end,:] atol = 1e-13
60 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 60 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13