Mercurial > repos > public > sbplib_julia
comparison test/SbpOperators/boundaryops/normal_derivative_test.jl @ 1018:5ec49dd2c7c4 feature/stencil_set_type
Reintroduce read_stencil_set
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 22 Mar 2022 09:57:28 +0100 |
parents | 7bf3121c6864 |
children | 7fc8df5157a7 |
comparison
equal
deleted
inserted
replaced
991:37fd8c1cadb2 | 1018:5ec49dd2c7c4 |
---|---|
8 | 8 |
9 @testset "normal_derivative" begin | 9 @testset "normal_derivative" begin |
10 g_1D = EquidistantGrid(11, 0.0, 1.0) | 10 g_1D = EquidistantGrid(11, 0.0, 1.0) |
11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) | 11 g_2D = EquidistantGrid((11,12), (0.0, 0.0), (1.0,1.0)) |
12 @testset "normal_derivative" begin | 12 @testset "normal_derivative" begin |
13 stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 13 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
14 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 14 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
15 @testset "1D" begin | 15 @testset "1D" begin |
16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) | 16 d_l = normal_derivative(g_1D, d_closure, CartesianBoundary{1,Lower}()) |
17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) | 17 @test d_l == normal_derivative(g_1D, stencil_set, CartesianBoundary{1,Lower}()) |
18 @test d_l isa BoundaryOperator{T,Lower} where T | 18 @test d_l isa BoundaryOperator{T,Lower} where T |
36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) | 36 v = evalOn(g_2D, (x,y)-> x^2 + (y-1)^2 + x*y) |
37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) | 37 v∂x = evalOn(g_2D, (x,y)-> 2*x + y) |
38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) | 38 v∂y = evalOn(g_2D, (x,y)-> 2*(y-1) + x) |
39 # TODO: Test for higher order polynomials? | 39 # TODO: Test for higher order polynomials? |
40 @testset "2nd order" begin | 40 @testset "2nd order" begin |
41 stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=2) | 41 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=2) |
42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 42 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | 43 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) |
44 | 44 |
45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 45 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 46 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |
47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 | 47 @test d_s*v ≈ -v∂y[:,1] atol = 1e-13 |
48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 | 48 @test d_n*v ≈ v∂y[:,end] atol = 1e-13 |
49 end | 49 end |
50 | 50 |
51 @testset "4th order" begin | 51 @testset "4th order" begin |
52 stencil_set = StencilSet(sbp_operators_path()*"standard_diagonal.toml"; order=4) | 52 stencil_set = read_stencil_set(sbp_operators_path()*"standard_diagonal.toml"; order=4) |
53 d_closure = parse_stencil(stencil_set["d1"]["closure"]) | 53 d_closure = parse_stencil(stencil_set["d1"]["closure"]) |
54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) | 54 d_w, d_e, d_s, d_n = normal_derivative.(Ref(g_2D), Ref(d_closure), boundary_identifiers(g_2D)) |
55 | 55 |
56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 | 56 @test d_w*v ≈ -v∂x[1,:] atol = 1e-13 |
57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 | 57 @test d_e*v ≈ v∂x[end,:] atol = 1e-13 |