comparison SbpOperators/src/quadrature.jl @ 326:4c8f1e9c6d73

Change name of file.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 24 Sep 2020 21:27:43 +0200
parents SbpOperators/src/Quadrature.jl@777063b6f049
children
comparison
equal deleted inserted replaced
323:b2ddc5e4d41a 326:4c8f1e9c6d73
1 # At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings
2 """
3 Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
4
5 Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
6 The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H
7 tensor operators.
8 """
9 export Quadrature
10 struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
11 H::NTuple{Dim,DiagonalNorm{T,N,M}}
12 end
13
14 LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
15
16 function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
17 error("not implemented")
18 end
19
20 LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I)
21
22 @inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
23 @inbounds q = apply(Q.H[1], v , I)
24 return q
25 end
26
27 @inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
28 # Quadrature in x direction
29 @inbounds vx = view(v, :, Int(J))
30 @inbounds qx = apply(Q.H[1], vx , I)
31 # Quadrature in y-direction
32 @inbounds vy = view(v, Int(I), :)
33 @inbounds qy = apply(Q.H[2], vy, J)
34 return qx*qy
35 end
36
37 """
38 DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
39
40 Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping
41 """
42 export DiagonalNorm, closuresize, LazyTensors.apply
43 struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
44 h::T # The grid spacing could be included in the stencil already. Preferable?
45 closure::NTuple{M,T}
46 #TODO: Write a nice constructor
47 end
48
49 @inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T
50 return @inbounds apply(H, v, I)
51 end
52
53 LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I)
54
55 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T
56 return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
57 end
58 @inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T
59 N = length(v);
60 return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)]
61 end
62
63 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T
64 return @inbounds H.h*v[Int(I)]
65 end
66
67 function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T
68 N = length(v);
69 r = getregion(Int(index), closuresize(H), N)
70 i = Index(Int(index), r)
71 return LazyTensors.apply(H, v, i)
72 end
73
74 function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M}
75 return M
76 end