changeset 326:4c8f1e9c6d73

Change name of file.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 24 Sep 2020 21:27:43 +0200
parents b2ddc5e4d41a
children 802edc9f252e
files SbpOperators/src/Quadrature.jl SbpOperators/src/quadrature.jl
diffstat 2 files changed, 76 insertions(+), 76 deletions(-) [+]
line wrap: on
line diff
--- a/SbpOperators/src/Quadrature.jl	Thu Sep 24 21:04:25 2020 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
-# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings
-"""
-    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
-The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H
-tensor operators.
-"""
-export Quadrature
-struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
-    H::NTuple{Dim,DiagonalNorm{T,N,M}}
-end
-
-LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
-
-function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
-    error("not implemented")
-end
-
-LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I)
-
-@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
-    @inbounds q = apply(Q.H[1], v , I)
-    return q
-end
-
-@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
-    # Quadrature in x direction
-    @inbounds vx = view(v, :, Int(J))
-    @inbounds qx = apply(Q.H[1], vx , I)
-    # Quadrature in y-direction
-    @inbounds vy = view(v, Int(I), :)
-    @inbounds qy = apply(Q.H[2], vy, J)
-    return qx*qy
-end
-
-"""
-    DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
-
-Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping
-"""
-export DiagonalNorm, closuresize, LazyTensors.apply
-struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
-    h::T # The grid spacing could be included in the stencil already. Preferable?
-    closure::NTuple{M,T}
-    #TODO: Write a nice constructor
-end
-
-@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T
-    return @inbounds apply(H, v, I)
-end
-
-LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I)
-
-@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T
-    return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
-end
-@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T
-    N = length(v);
-    return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)]
-end
-
-@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T
-    return @inbounds H.h*v[Int(I)]
-end
-
-function LazyTensors.apply(H::DiagonalNorm,  v::AbstractVector{T}, index::Index{Unknown}) where T
-    N = length(v);
-    r = getregion(Int(index), closuresize(H), N)
-    i = Index(Int(index), r)
-    return LazyTensors.apply(H, v, i)
-end
-
-function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M}
-    return M
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/SbpOperators/src/quadrature.jl	Thu Sep 24 21:27:43 2020 +0200
@@ -0,0 +1,76 @@
+# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings
+"""
+    Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+
+Implements the quadrature operator `Q` of Dim dimension as a TensorMapping
+The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H
+tensor operators.
+"""
+export Quadrature
+struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim}
+    H::NTuple{Dim,DiagonalNorm{T,N,M}}
+end
+
+LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
+
+function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
+    error("not implemented")
+end
+
+LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I)
+
+@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
+    @inbounds q = apply(Q.H[1], v , I)
+    return q
+end
+
+@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
+    # Quadrature in x direction
+    @inbounds vx = view(v, :, Int(J))
+    @inbounds qx = apply(Q.H[1], vx , I)
+    # Quadrature in y-direction
+    @inbounds vy = view(v, Int(I), :)
+    @inbounds qy = apply(Q.H[2], vy, J)
+    return qx*qy
+end
+
+"""
+    DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
+
+Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping
+"""
+export DiagonalNorm, closuresize, LazyTensors.apply
+struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1}
+    h::T # The grid spacing could be included in the stencil already. Preferable?
+    closure::NTuple{M,T}
+    #TODO: Write a nice constructor
+end
+
+@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T
+    return @inbounds apply(H, v, I)
+end
+
+LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I)
+
+@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T
+    return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
+end
+@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T
+    N = length(v);
+    return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)]
+end
+
+@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T
+    return @inbounds H.h*v[Int(I)]
+end
+
+function LazyTensors.apply(H::DiagonalNorm,  v::AbstractVector{T}, index::Index{Unknown}) where T
+    N = length(v);
+    r = getregion(Int(index), closuresize(H), N)
+    i = Index(Int(index), r)
+    return LazyTensors.apply(H, v, i)
+end
+
+function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M}
+    return M
+end