Mercurial > repos > public > sbplib_julia
changeset 326:4c8f1e9c6d73
Change name of file.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 24 Sep 2020 21:27:43 +0200 |
parents | b2ddc5e4d41a |
children | 802edc9f252e |
files | SbpOperators/src/Quadrature.jl SbpOperators/src/quadrature.jl |
diffstat | 2 files changed, 76 insertions(+), 76 deletions(-) [+] |
line wrap: on
line diff
--- a/SbpOperators/src/Quadrature.jl Thu Sep 24 21:04:25 2020 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,76 +0,0 @@ -# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings -""" - Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the quadrature operator `Q` of Dim dimension as a TensorMapping -The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H -tensor operators. -""" -export Quadrature -struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} - H::NTuple{Dim,DiagonalNorm{T,N,M}} -end - -LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size - -function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} - error("not implemented") -end - -LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) - -@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T - @inbounds q = apply(Q.H[1], v , I) - return q -end - -@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T - # Quadrature in x direction - @inbounds vx = view(v, :, Int(J)) - @inbounds qx = apply(Q.H[1], vx , I) - # Quadrature in y-direction - @inbounds vy = view(v, Int(I), :) - @inbounds qy = apply(Q.H[2], vy, J) - return qx*qy -end - -""" - DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} - -Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping -""" -export DiagonalNorm, closuresize, LazyTensors.apply -struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} - h::T # The grid spacing could be included in the stencil already. Preferable? - closure::NTuple{M,T} - #TODO: Write a nice constructor -end - -@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T - return @inbounds apply(H, v, I) -end - -LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I) - -@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T - return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] -end -@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T - N = length(v); - return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] -end - -@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T - return @inbounds H.h*v[Int(I)] -end - -function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T - N = length(v); - r = getregion(Int(index), closuresize(H), N) - i = Index(Int(index), r) - return LazyTensors.apply(H, v, i) -end - -function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} - return M -end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/SbpOperators/src/quadrature.jl Thu Sep 24 21:27:43 2020 +0200 @@ -0,0 +1,76 @@ +# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings +""" + Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the quadrature operator `Q` of Dim dimension as a TensorMapping +The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H +tensor operators. +""" +export Quadrature +struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} + H::NTuple{Dim,DiagonalNorm{T,N,M}} +end + +LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size + +function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} + error("not implemented") +end + +LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) + +@inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T + @inbounds q = apply(Q.H[1], v , I) + return q +end + +@inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T + # Quadrature in x direction + @inbounds vx = view(v, :, Int(J)) + @inbounds qx = apply(Q.H[1], vx , I) + # Quadrature in y-direction + @inbounds vy = view(v, Int(I), :) + @inbounds qy = apply(Q.H[2], vy, J) + return qx*qy +end + +""" + DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} + +Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping +""" +export DiagonalNorm, closuresize, LazyTensors.apply +struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} + h::T # The grid spacing could be included in the stencil already. Preferable? + closure::NTuple{M,T} + #TODO: Write a nice constructor +end + +@inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T + return @inbounds apply(H, v, I) +end + +LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I) + +@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T + return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] +end +@inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T + N = length(v); + return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] +end + +@inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T + return @inbounds H.h*v[Int(I)] +end + +function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T + N = length(v); + r = getregion(Int(index), closuresize(H), N) + i = Index(Int(index), r) + return LazyTensors.apply(H, v, i) +end + +function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} + return M +end