Mercurial > repos > public > sbplib_julia
view SbpOperators/src/Quadrature.jl @ 322:777063b6f049
Dispatch applys on vararg Index instead of tuples
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:42:55 +0200 |
parents | 8c166b092b69 |
children |
line wrap: on
line source
# At the moment the grid property is used all over. It could possibly be removed if we implement all the 1D operators as TensorMappings """ Quadrature{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the quadrature operator `Q` of Dim dimension as a TensorMapping The multi-dimensional tensor operator consists of a tuple of 1D DiagonalNorm H tensor operators. """ export Quadrature struct Quadrature{Dim,T<:Real,N,M} <: TensorOperator{T,Dim} H::NTuple{Dim,DiagonalNorm{T,N,M}} end LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} error("not implemented") end LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) @inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T @inbounds q = apply(Q.H[1], v , I) return q end @inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T # Quadrature in x direction @inbounds vx = view(v, :, Int(J)) @inbounds qx = apply(Q.H[1], vx , I) # Quadrature in y-direction @inbounds vy = view(v, Int(I), :) @inbounds qy = apply(Q.H[2], vy, J) return qx*qy end """ DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} Implements the diagnoal norm operator `H` of Dim dimension as a TensorMapping """ export DiagonalNorm, closuresize, LazyTensors.apply struct DiagonalNorm{T<:Real,N,M} <: TensorOperator{T,1} h::T # The grid spacing could be included in the stencil already. Preferable? closure::NTuple{M,T} #TODO: Write a nice constructor end @inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T return @inbounds apply(H, v, I) end LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I) @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] end @inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T N = length(v); return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] end @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T return @inbounds H.h*v[Int(I)] end function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T N = length(v); r = getregion(Int(index), closuresize(H), N) i = Index(Int(index), r) return LazyTensors.apply(H, v, i) end function closuresize(H::DiagonalNorm{T<:Real,N,M}) where {T,N,M} return M end