comparison SbpOperators/src/Quadrature.jl @ 322:777063b6f049

Dispatch applys on vararg Index instead of tuples
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 09 Sep 2020 21:42:55 +0200
parents 8c166b092b69
children
comparison
equal deleted inserted replaced
315:7a7d9daa9eb7 322:777063b6f049
11 H::NTuple{Dim,DiagonalNorm{T,N,M}} 11 H::NTuple{Dim,DiagonalNorm{T,N,M}}
12 end 12 end
13 13
14 LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size 14 LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size
15 15
16 function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} 16 function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim}
17 error("not implemented") 17 error("not implemented")
18 end 18 end
19 19
20 LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) 20 LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I)
21 21
22 @inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T 22 @inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T
23 @inbounds q = apply(Q.H[1], v , I[1]) 23 @inbounds q = apply(Q.H[1], v , I)
24 return q 24 return q
25 end 25 end
26 26
27 @inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T 27 @inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T
28 # Quadrature in x direction 28 # Quadrature in x direction
29 @inbounds vx = view(v, :, Int(I[2])) 29 @inbounds vx = view(v, :, Int(J))
30 @inbounds qx = apply(Q.H[1], vx , I[1]) 30 @inbounds qx = apply(Q.H[1], vx , I)
31 # Quadrature in y-direction 31 # Quadrature in y-direction
32 @inbounds vy = view(v, Int(I[1]), :) 32 @inbounds vy = view(v, Int(I), :)
33 @inbounds qy = apply(Q.H[2], vy, I[2]) 33 @inbounds qy = apply(Q.H[2], vy, J)
34 return qx*qy 34 return qx*qy
35 end 35 end
36 36
37 """ 37 """
38 DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} 38 DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim}
44 h::T # The grid spacing could be included in the stencil already. Preferable? 44 h::T # The grid spacing could be included in the stencil already. Preferable?
45 closure::NTuple{M,T} 45 closure::NTuple{M,T}
46 #TODO: Write a nice constructor 46 #TODO: Write a nice constructor
47 end 47 end
48 48
49 @inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T 49 @inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T
50 return @inbounds apply(H, v, I[1]) 50 return @inbounds apply(H, v, I)
51 end 51 end
52 52
53 LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) 53 LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I)
54 54
55 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T 55 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T
56 return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] 56 return @inbounds H.h*H.closure[Int(I)]*v[Int(I)]
57 end 57 end
58 @inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T 58 @inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T
59 N = length(v); 59 N = length(v);
60 return @inbounds H.h*H.closure[N-Int(i)+1]v[Int(i)] 60 return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)]
61 end 61 end
62 62
63 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T 63 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T
64 return @inbounds H.h*v[Int(i)] 64 return @inbounds H.h*v[Int(I)]
65 end 65 end
66 66
67 function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T 67 function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T
68 N = length(v); 68 N = length(v);
69 r = getregion(Int(index), closuresize(H), N) 69 r = getregion(Int(index), closuresize(H), N)