Mercurial > repos > public > sbplib_julia
comparison SbpOperators/src/Quadrature.jl @ 322:777063b6f049
Dispatch applys on vararg Index instead of tuples
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 09 Sep 2020 21:42:55 +0200 |
parents | 8c166b092b69 |
children |
comparison
equal
deleted
inserted
replaced
315:7a7d9daa9eb7 | 322:777063b6f049 |
---|---|
11 H::NTuple{Dim,DiagonalNorm{T,N,M}} | 11 H::NTuple{Dim,DiagonalNorm{T,N,M}} |
12 end | 12 end |
13 | 13 |
14 LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size | 14 LazyTensors.domain_size(Q::Quadrature{Dim}, range_size::NTuple{Dim,Integer}) where Dim = range_size |
15 | 15 |
16 function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::NTuple{Dim,Index}) where {T,Dim} | 16 function LazyTensors.apply(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {T,Dim} |
17 error("not implemented") | 17 error("not implemented") |
18 end | 18 end |
19 | 19 |
20 LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where {Dim,T} = LazyTensors.apply(Q,v,I) | 20 LazyTensors.apply_transpose(Q::Quadrature{Dim,T}, v::AbstractArray{T,Dim}, I::Vararg{Index,Dim}) where {Dim,T} = LazyTensors.apply(Q,v,I) |
21 | 21 |
22 @inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 22 @inline function LazyTensors.apply(Q::Quadrature{1,T}, v::AbstractVector{T}, I::Index) where T |
23 @inbounds q = apply(Q.H[1], v , I[1]) | 23 @inbounds q = apply(Q.H[1], v , I) |
24 return q | 24 return q |
25 end | 25 end |
26 | 26 |
27 @inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T | 27 @inline function LazyTensors.apply(Q::Quadrature{2,T}, v::AbstractArray{T,2}, I::Index, J::Index) where T |
28 # Quadrature in x direction | 28 # Quadrature in x direction |
29 @inbounds vx = view(v, :, Int(I[2])) | 29 @inbounds vx = view(v, :, Int(J)) |
30 @inbounds qx = apply(Q.H[1], vx , I[1]) | 30 @inbounds qx = apply(Q.H[1], vx , I) |
31 # Quadrature in y-direction | 31 # Quadrature in y-direction |
32 @inbounds vy = view(v, Int(I[1]), :) | 32 @inbounds vy = view(v, Int(I), :) |
33 @inbounds qy = apply(Q.H[2], vy, I[2]) | 33 @inbounds qy = apply(Q.H[2], vy, J) |
34 return qx*qy | 34 return qx*qy |
35 end | 35 end |
36 | 36 |
37 """ | 37 """ |
38 DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} | 38 DiagonalNorm{Dim,T<:Real,N,M,K} <: TensorMapping{T,Dim,Dim} |
44 h::T # The grid spacing could be included in the stencil already. Preferable? | 44 h::T # The grid spacing could be included in the stencil already. Preferable? |
45 closure::NTuple{M,T} | 45 closure::NTuple{M,T} |
46 #TODO: Write a nice constructor | 46 #TODO: Write a nice constructor |
47 end | 47 end |
48 | 48 |
49 @inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::NTuple{1,Index}) where T | 49 @inline function LazyTensors.apply(H::DiagonalNorm{T}, v::AbstractVector{T}, I::Index) where T |
50 return @inbounds apply(H, v, I[1]) | 50 return @inbounds apply(H, v, I) |
51 end | 51 end |
52 | 52 |
53 LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::NTuple{2,Index}) where T = LazyTensors.apply(H,v,I) | 53 LazyTensors.apply_transpose(H::Quadrature{Dim,T}, v::AbstractArray{T,2}, I::Index) where T = LazyTensors.apply(H,v,I) |
54 | 54 |
55 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Lower}) where T | 55 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Lower}) where T |
56 return @inbounds H.h*H.closure[Int(i)]*v[Int(i)] | 56 return @inbounds H.h*H.closure[Int(I)]*v[Int(I)] |
57 end | 57 end |
58 @inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, i::Index{Upper}) where T | 58 @inline LazyTensors.apply(H::DiagonalNorm,v::AbstractVector{T}, I::Index{Upper}) where T |
59 N = length(v); | 59 N = length(v); |
60 return @inbounds H.h*H.closure[N-Int(i)+1]v[Int(i)] | 60 return @inbounds H.h*H.closure[N-Int(I)+1]v[Int(I)] |
61 end | 61 end |
62 | 62 |
63 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, i::Index{Interior}) where T | 63 @inline LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, I::Index{Interior}) where T |
64 return @inbounds H.h*v[Int(i)] | 64 return @inbounds H.h*v[Int(I)] |
65 end | 65 end |
66 | 66 |
67 function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T | 67 function LazyTensors.apply(H::DiagonalNorm, v::AbstractVector{T}, index::Index{Unknown}) where T |
68 N = length(v); | 68 N = length(v); |
69 r = getregion(Int(index), closuresize(H), N) | 69 r = getregion(Int(index), closuresize(H), N) |