Mercurial > repos > public > sbplib_julia
comparison src/SbpOperators/volumeops/laplace/laplace.jl @ 1291:356ec6a72974 refactor/grids
Implement changes in SbpOperators
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Tue, 07 Mar 2023 09:48:00 +0100 |
| parents | dfbd62c7eb09 |
| children | e94ddef5e72f |
comparison
equal
deleted
inserted
replaced
| 1290:31d0b7638304 | 1291:356ec6a72974 |
|---|---|
| 1 """ | 1 """ |
| 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} | 2 Laplace{T, Dim, TM} <: LazyTensor{T, Dim, Dim} |
| 3 | 3 |
| 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a | 4 Implements the Laplace operator, approximating ∑d²/xᵢ² , i = 1,...,`Dim` as a |
| 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` | 5 `LazyTensor`. Additionally `Laplace` stores the `StencilSet` |
| 6 used to construct the `LazyTensor `. | 6 used to construct the `LazyTensor`. |
| 7 """ | 7 """ |
| 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} | 8 struct Laplace{T, Dim, TM<:LazyTensor{T, Dim, Dim}} <: LazyTensor{T, Dim, Dim} |
| 9 D::TM # Difference operator | 9 D::TM # Difference operator |
| 10 stencil_set::StencilSet # Stencil set of the operator | 10 stencil_set::StencilSet # Stencil set of the operator |
| 11 end | 11 end |
| 15 | 15 |
| 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. | 16 Creates the `Laplace` operator `Δ` on `grid` given a `stencil_set`. |
| 17 | 17 |
| 18 See also [`laplace`](@ref). | 18 See also [`laplace`](@ref). |
| 19 """ | 19 """ |
| 20 function Laplace(grid::EquidistantGrid, stencil_set::StencilSet) | 20 function Laplace(g::Grid, stencil_set::StencilSet) |
| 21 inner_stencil = parse_stencil(stencil_set["D2"]["inner_stencil"]) | 21 Δ = laplace(g, stencil_set) |
| 22 closure_stencils = parse_stencil.(stencil_set["D2"]["closure_stencils"]) | 22 return Laplace(Δ, stencil_set) |
| 23 Δ = laplace(grid, inner_stencil,closure_stencils) | |
| 24 return Laplace(Δ,stencil_set) | |
| 25 end | 23 end |
| 26 | 24 |
| 27 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) | 25 LazyTensors.range_size(L::Laplace) = LazyTensors.range_size(L.D) |
| 28 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) | 26 LazyTensors.domain_size(L::Laplace) = LazyTensors.domain_size(L.D) |
| 29 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) | 27 LazyTensors.apply(L::Laplace, v::AbstractArray, I...) = LazyTensors.apply(L.D,v,I...) |
| 30 | 28 |
| 31 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. | 29 # TODO: Implement pretty printing of Laplace once pretty printing of LazyTensors is implemented. |
| 32 # Base.show(io::IO, L::Laplace) = ... | 30 # Base.show(io::IO, L::Laplace) = ... |
| 33 | 31 |
| 34 """ | 32 """ |
| 35 laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 33 laplace(g::Grid, stencil_set) |
| 36 | 34 |
| 37 Creates the Laplace operator operator `Δ` as a `LazyTensor` | 35 Creates the Laplace operator operator `Δ` as a `LazyTensor` on the given grid |
| 38 | 36 |
| 39 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `grid`, using | 37 `Δ` approximates the Laplace operator ∑d²/xᵢ² , i = 1,...,`Dim` on `g`. The |
| 40 the stencil `inner_stencil` in the interior and a set of stencils `closure_stencils` | 38 approximation depends on the type of grid and the stencil set. |
| 41 for the points in the closure regions. | |
| 42 | |
| 43 On a one-dimensional `grid`, `Δ` is equivalent to `second_derivative`. On a | |
| 44 multi-dimensional `grid`, `Δ` is the sum of multi-dimensional `second_derivative`s | |
| 45 where the sum is carried out lazily. | |
| 46 | 39 |
| 47 See also: [`second_derivative`](@ref). | 40 See also: [`second_derivative`](@ref). |
| 48 """ | 41 """ |
| 49 function laplace(grid::EquidistantGrid, inner_stencil, closure_stencils) | 42 function laplace end |
| 50 Δ = second_derivative(grid, inner_stencil, closure_stencils, 1) | 43 function laplace(g::TensorGrid, stencil_set) |
| 51 for d = 2:ndims(grid) | 44 # return mapreduce(+, enumerate(g.grids)) do (i, gᵢ) |
| 52 Δ += second_derivative(grid, inner_stencil, closure_stencils, d) | 45 # Δᵢ = laplace(gᵢ, stencil_set) |
| 46 # LazyTensors.inflate(Δᵢ, size(g), i) | |
| 47 # end | |
| 48 | |
| 49 Δ = LazyTensors.inflate(laplace(g.grids[1], stencil_set), size(g), 1) | |
| 50 for d = 2:ndims(g) | |
| 51 Δ += LazyTensors.inflate(laplace(g.grids[d], stencil_set), size(g), d) | |
| 53 end | 52 end |
| 54 return Δ | 53 return Δ |
| 55 end | 54 end |
| 55 laplace(g::EquidistantGrid, stencil_set) = second_derivative(g, stencil_set) |
