Mercurial > repos > public > sbplib
changeset 298:861972361f75 feature/hypsyst
The curvelinear works for quads
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Tue, 04 Oct 2016 08:40:42 +0200 |
parents | cd30b22cee56 |
children | 4d8d6eb0c116 |
files | +scheme/Hypsyst2dCurve.m |
diffstat | 1 files changed, 333 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
diff -r cd30b22cee56 -r 861972361f75 +scheme/Hypsyst2dCurve.m --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Hypsyst2dCurve.m Tue Oct 04 08:40:42 2016 +0200 @@ -0,0 +1,333 @@ +classdef Hypsyst2dCurve < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + n %size of system + h % Grid spacing + X,Y % Values of x and y for each grid point + + J, Ji + xi,eta + Xi,Eta + + A,B + X_eta, Y_eta + X_xi,Y_xi + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + Ahat, Bhat, E + + H % Discrete norm + % Norms in the x and y directions + Hxii,Hetai % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + I_xi,I_eta, I_N, onesN + e_w, e_e, e_s, e_n + index_w, index_e,index_s,index_n + params %parameters for the coeficient matrice + end + + + methods + function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti) + default_arg('E', []) + xilim = {0 1}; + etalim = {0 1}; + + if length(m) == 1 + m = [m m]; + end + obj.params = params; + obj.A=A; + obj.B=B; + + + obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta); + obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi); + obj.E=@(params,x,y,~,~)E(params,x,y); + + m_xi = m(1); + m_eta = m(2); + m_tot=m_xi*m_eta; + + ops_xi = sbp.D2Standard(m_xi,xilim,order); + ops_eta = sbp.D2Standard(m_eta,etalim,order); + + obj.xi = ops_xi.x; + obj.eta = ops_eta.x; + + obj.Xi = kr(obj.xi,ones(m_eta,1)); + obj.Eta = kr(ones(m_xi,1),obj.eta); + + obj.n = length(A(obj.params,0,0)); + obj.onesN=ones(obj.n); + + obj.index_w=1:m_xi; + obj.index_e=(m_tot-m_xi+1):m_tot; + obj.index_s=1:m_xi:(m_tot-m_xi+1); + obj.index_n=(m_xi):m_xi:m_tot; + + I_n = eye(obj.n); + I_xi = speye(m_xi); + obj.I_xi = I_xi; + I_eta = speye(m_eta); + obj.I_eta = I_eta; + + D1_xi = kr(I_n, ops_xi.D1, I_eta); + obj.Hxii = kr(I_n, ops_xi.HI, I_eta); + D1_eta = kr(I_n, I_xi, ops_eta.D1); + obj.Hetai = kr(I_n, I_xi, ops_eta.HI); + + obj.e_w = kr(I_n, ops_xi.e_l, I_eta); + obj.e_e = kr(I_n, ops_xi.e_r, I_eta); + obj.e_s = kr(I_n, I_xi, ops_eta.e_l); + obj.e_n = kr(I_n, I_xi, ops_eta.e_r); + + [X,Y] = ti.map(obj.xi,obj.eta); + + [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1); + [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1); + + obj.X=reshape(X,m_xi*m_eta,1); + obj.Y=reshape(Y,m_xi*m_eta,1); + obj.X_xi=reshape(x_xi,m_xi*m_eta,1); + obj.Y_xi=reshape(y_xi,m_xi*m_eta,1); + obj.X_eta=reshape(x_eta,m_xi*m_eta,1); + obj.Y_eta=reshape(y_eta,m_xi*m_eta,1); + + Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta); + Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi); + E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]); + + obj.m=m; + obj.h=[ops_xi.h ops_eta.h]; + obj.order=order; + obj.J=x_xi.*y_eta - x_eta.*y_xi; + obj.Ji =kr(I_n,spdiags(1./obj.J(:),0,m_xi*m_eta,m_xi*m_eta)); + + obj.D=obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated; + + end + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + function [closure, penalty] = boundary_condition(obj,boundary,type,L) + default_arg('type','char'); + switch type + case{'c','char'} + [closure,penalty]=boundary_condition_char(obj,boundary); + case{'general'} + [closure,penalty]=boundary_condition_general(obj,boundary,L); + otherwise + error('No such boundary condition') + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + error('An interface function does not exist yet'); + end + + function N = size(obj) + N = obj.m; + end + + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_) + params=obj.params; + + if isa(mat,'function_handle') + [rows,cols]=size(mat(params,0,0,0,0)); + x_=kr(x_,obj.onesN); + y_=kr(y_,obj.onesN); + matVec=mat(params,X',Y',x_',y_'); + matVec=sparse(matVec); + side=max(length(X),length(Y)); + else + matVec=mat; + [rows,cols]=size(matVec); + side=max(length(X),length(Y)); + cols=cols/side; + end + ret=kron(ones(rows,cols),speye(side)); + + for ii=1:rows + for jj=1:cols + ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); + end + end + end + + + function [closure, penalty]=boundary_condition_char(obj,boundary) + params=obj.params; + xi=obj.xi; eta=obj.eta; + side=max(length(xi),length(eta)); + + switch boundary + case {'w','W','west'} + e_=obj.e_w; + mat=obj.Ahat; + boundPos='l'; + Hi=obj.Hxii; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(1),eta,obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); + case {'e','E','east'} + e_=obj.e_e; + mat=obj.Ahat; + boundPos='r'; + Hi=obj.Hxii; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(end),eta,obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); + case {'s','S','south'} + e_=obj.e_s; + mat=obj.Bhat; + boundPos='l'; + Hi=obj.Hetai; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(1),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); + case {'n','N','north'} + e_=obj.e_n; + mat=obj.Bhat; + boundPos='r'; + Hi=obj.Hetai; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(end),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); + end + + pos=signVec(1); zeroval=signVec(2); neg=signVec(3); + + switch boundPos + case {'l'} + tau=sparse(obj.n*side,pos*side); + Vi_plus=Vi(1:pos*side,:); + tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); + closure=Hi*e_*V*tau*Vi_plus*e_'; + penalty=-Hi*e_*V*tau*Vi_plus; + case {'r'} + tau=sparse(obj.n*side,neg*side); + tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); + Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); + closure=Hi*e_*V*tau*Vi_minus*e_'; + penalty=-Hi*e_*V*tau*Vi_minus; + end + end + + + function [closure,penalty]=boundary_condition_general(obj,boundary,L) + params=obj.params; + xi=obj.xi; eta=obj.eta; + side=max(length(xi),length(eta)); + + switch boundary + case {'w','W','west'} + e_=obj.e_w; + mat=obj.Ahat; + boundPos='l'; + Hi=obj.Hxii; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(1),eta,obj.x_eta,obj.y_eta); + L=obj.evaluateCoefficientMatrix(L,xi(1),eta); + case {'e','E','east'} + e_=obj.e_e; + mat=obj.Ahat; + boundPos='r'; + Hi=obj.Hxii; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(end),eta,obj.x_eta,obj.y_eta); + L=obj.evaluateCoefficientMatrix(L,xi(end),eta,[],[]); + case {'s','S','south'} + e_=obj.e_s; + mat=obj.Bhat; + boundPos='l'; + Hi=obj.Hetai; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(1),obj.x_xi,obj.y_xi); + L=obj.evaluateCoefficientMatrix(L,xi,eta(1)); + case {'n','N','north'} + e_=obj.e_n; + mat=obj.Bhat; + boundPos='r'; + Hi=obj.Hetai; + [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(end),obj.x_xi,obj.y_xi); + L=obj.evaluateCoefficientMatrix(L,xi,eta(end)); + end + + pos=signVec(1); zeroval=signVec(2); neg=signVec(3); + + switch boundPos + case {'l'} + tau=sparse(obj.n*side,pos*side); + Vi_plus=Vi(1:pos*side,:); + Vi_minus=Vi(pos*side+1:obj.n*side,:); + V_plus=V(:,1:pos*side); + V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); + + tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); + R=-inv(L*V_plus)*(L*V_minus); + closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; + case {'r'} + tau=sparse(obj.n*side,neg*side); + tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); + Vi_plus=Vi(1:pos*side,:); + Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); + + V_plus=V(:,1:pos*side); + V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); + R=-inv(L*V_minus)*(L*V_plus); + closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; + end + end + + + function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,x_,y_) + params=obj.params; + syms xs ys + if(sum(abs(x_))~=0) + syms xs_ + else + xs_=0; + end + + if(sum(abs(y_))~=0) + syms ys_; + else + ys_=0; + end + + [V, D]=eig(mat(params,xs,ys,xs_,ys_)); + xs=1;ys=1; xs_=x_(1); ys_=y_(1); + DD=eval(diag(D)); + + poseig=find(DD>0); + zeroeig=find(DD==0); + negeig=find(DD<0); + syms xs ys xs_ ys_ + DD=diag(D); + + D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); + V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi=inv(V); + xs=x; + ys=y; + xs_=x_'; + ys_=y_'; + + side=max(length(x),length(y)); + Dret=zeros(obj.n,side*obj.n); + Vret=zeros(obj.n,side*obj.n); + Viret=zeros(obj.n,side*obj.n); + for ii=1:obj.n + for jj=1:obj.n + Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); + Viret(jj,(ii-1)*side+1:side*ii)=eval(Vi(jj,ii)); + end + end + + D=sparse(Dret); + V=sparse(Vret); + Vi=sparse(Viret); + V=obj.evaluateCoefficientMatrix(V,x,y,x_,y_); + D=obj.evaluateCoefficientMatrix(D,x,y,x_,y_); + Vi=obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_); + signVec=[length(poseig),length(zeroeig),length(negeig)]; + end + + end +end \ No newline at end of file