Mercurial > repos > public > sbplib
view +scheme/Hypsyst2dCurve.m @ 298:861972361f75 feature/hypsyst
The curvelinear works for quads
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Tue, 04 Oct 2016 08:40:42 +0200 |
parents | |
children | 4d8d6eb0c116 |
line wrap: on
line source
classdef Hypsyst2dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system h % Grid spacing X,Y % Values of x and y for each grid point J, Ji xi,eta Xi,Eta A,B X_eta, Y_eta X_xi,Y_xi order % Order accuracy for the approximation D % non-stabalized scheme operator Ahat, Bhat, E H % Discrete norm % Norms in the x and y directions Hxii,Hetai % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_xi,I_eta, I_N, onesN e_w, e_e, e_s, e_n index_w, index_e,index_s,index_n params %parameters for the coeficient matrice end methods function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti) default_arg('E', []) xilim = {0 1}; etalim = {0 1}; if length(m) == 1 m = [m m]; end obj.params = params; obj.A=A; obj.B=B; obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta); obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi); obj.E=@(params,x,y,~,~)E(params,x,y); m_xi = m(1); m_eta = m(2); m_tot=m_xi*m_eta; ops_xi = sbp.D2Standard(m_xi,xilim,order); ops_eta = sbp.D2Standard(m_eta,etalim,order); obj.xi = ops_xi.x; obj.eta = ops_eta.x; obj.Xi = kr(obj.xi,ones(m_eta,1)); obj.Eta = kr(ones(m_xi,1),obj.eta); obj.n = length(A(obj.params,0,0)); obj.onesN=ones(obj.n); obj.index_w=1:m_xi; obj.index_e=(m_tot-m_xi+1):m_tot; obj.index_s=1:m_xi:(m_tot-m_xi+1); obj.index_n=(m_xi):m_xi:m_tot; I_n = eye(obj.n); I_xi = speye(m_xi); obj.I_xi = I_xi; I_eta = speye(m_eta); obj.I_eta = I_eta; D1_xi = kr(I_n, ops_xi.D1, I_eta); obj.Hxii = kr(I_n, ops_xi.HI, I_eta); D1_eta = kr(I_n, I_xi, ops_eta.D1); obj.Hetai = kr(I_n, I_xi, ops_eta.HI); obj.e_w = kr(I_n, ops_xi.e_l, I_eta); obj.e_e = kr(I_n, ops_xi.e_r, I_eta); obj.e_s = kr(I_n, I_xi, ops_eta.e_l); obj.e_n = kr(I_n, I_xi, ops_eta.e_r); [X,Y] = ti.map(obj.xi,obj.eta); [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1); [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1); obj.X=reshape(X,m_xi*m_eta,1); obj.Y=reshape(Y,m_xi*m_eta,1); obj.X_xi=reshape(x_xi,m_xi*m_eta,1); obj.Y_xi=reshape(y_xi,m_xi*m_eta,1); obj.X_eta=reshape(x_eta,m_xi*m_eta,1); obj.Y_eta=reshape(y_eta,m_xi*m_eta,1); Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta); Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi); E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]); obj.m=m; obj.h=[ops_xi.h ops_eta.h]; obj.order=order; obj.J=x_xi.*y_eta - x_eta.*y_xi; obj.Ji =kr(I_n,spdiags(1./obj.J(:),0,m_xi*m_eta,m_xi*m_eta)); obj.D=obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); switch type case{'c','char'} [closure,penalty]=boundary_condition_char(obj,boundary); case{'general'} [closure,penalty]=boundary_condition_general(obj,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.m; end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_) params=obj.params; if isa(mat,'function_handle') [rows,cols]=size(mat(params,0,0,0,0)); x_=kr(x_,obj.onesN); y_=kr(y_,obj.onesN); matVec=mat(params,X',Y',x_',y_'); matVec=sparse(matVec); side=max(length(X),length(Y)); else matVec=mat; [rows,cols]=size(matVec); side=max(length(X),length(Y)); cols=cols/side; end ret=kron(ones(rows,cols),speye(side)); for ii=1:rows for jj=1:cols ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); end end end function [closure, penalty]=boundary_condition_char(obj,boundary) params=obj.params; xi=obj.xi; eta=obj.eta; side=max(length(xi),length(eta)); switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.Ahat; boundPos='l'; Hi=obj.Hxii; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(1),eta,obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); case {'e','E','east'} e_=obj.e_e; mat=obj.Ahat; boundPos='r'; Hi=obj.Hxii; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(end),eta,obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); case {'s','S','south'} e_=obj.e_s; mat=obj.Bhat; boundPos='l'; Hi=obj.Hetai; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(1),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); case {'n','N','north'} e_=obj.e_n; mat=obj.Bhat; boundPos='r'; Hi=obj.Hetai; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(end),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); end pos=signVec(1); zeroval=signVec(2); neg=signVec(3); switch boundPos case {'l'} tau=sparse(obj.n*side,pos*side); Vi_plus=Vi(1:pos*side,:); tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); closure=Hi*e_*V*tau*Vi_plus*e_'; penalty=-Hi*e_*V*tau*Vi_plus; case {'r'} tau=sparse(obj.n*side,neg*side); tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); closure=Hi*e_*V*tau*Vi_minus*e_'; penalty=-Hi*e_*V*tau*Vi_minus; end end function [closure,penalty]=boundary_condition_general(obj,boundary,L) params=obj.params; xi=obj.xi; eta=obj.eta; side=max(length(xi),length(eta)); switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.Ahat; boundPos='l'; Hi=obj.Hxii; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(1),eta,obj.x_eta,obj.y_eta); L=obj.evaluateCoefficientMatrix(L,xi(1),eta); case {'e','E','east'} e_=obj.e_e; mat=obj.Ahat; boundPos='r'; Hi=obj.Hxii; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi(end),eta,obj.x_eta,obj.y_eta); L=obj.evaluateCoefficientMatrix(L,xi(end),eta,[],[]); case {'s','S','south'} e_=obj.e_s; mat=obj.Bhat; boundPos='l'; Hi=obj.Hetai; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(1),obj.x_xi,obj.y_xi); L=obj.evaluateCoefficientMatrix(L,xi,eta(1)); case {'n','N','north'} e_=obj.e_n; mat=obj.Bhat; boundPos='r'; Hi=obj.Hetai; [V,Vi,D,signVec]=obj.matrixDiag(mat,xi,eta(end),obj.x_xi,obj.y_xi); L=obj.evaluateCoefficientMatrix(L,xi,eta(end)); end pos=signVec(1); zeroval=signVec(2); neg=signVec(3); switch boundPos case {'l'} tau=sparse(obj.n*side,pos*side); Vi_plus=Vi(1:pos*side,:); Vi_minus=Vi(pos*side+1:obj.n*side,:); V_plus=V(:,1:pos*side); V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); R=-inv(L*V_plus)*(L*V_minus); closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau=sparse(obj.n*side,neg*side); tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); Vi_plus=Vi(1:pos*side,:); Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); V_plus=V(:,1:pos*side); V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); R=-inv(L*V_minus)*(L*V_plus); closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; end end function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,x_,y_) params=obj.params; syms xs ys if(sum(abs(x_))~=0) syms xs_ else xs_=0; end if(sum(abs(y_))~=0) syms ys_; else ys_=0; end [V, D]=eig(mat(params,xs,ys,xs_,ys_)); xs=1;ys=1; xs_=x_(1); ys_=y_(1); DD=eval(diag(D)); poseig=find(DD>0); zeroeig=find(DD==0); negeig=find(DD<0); syms xs ys xs_ ys_ DD=diag(D); D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi=inv(V); xs=x; ys=y; xs_=x_'; ys_=y_'; side=max(length(x),length(y)); Dret=zeros(obj.n,side*obj.n); Vret=zeros(obj.n,side*obj.n); Viret=zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); Viret(jj,(ii-1)*side+1:side*ii)=eval(Vi(jj,ii)); end end D=sparse(Dret); V=sparse(Vret); Vi=sparse(Viret); V=obj.evaluateCoefficientMatrix(V,x,y,x_,y_); D=obj.evaluateCoefficientMatrix(D,x,y,x_,y_); Vi=obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_); signVec=[length(poseig),length(zeroeig),length(negeig)]; end end end