Mercurial > repos > public > sbplib
view diracDiscr.m @ 1232:52d774e69b1f feature/dirac_discr
Clean up diracDiscr, remove obsolete tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 19 Nov 2019 13:54:41 -0800 |
parents | 86ee5648e384 |
children | f1806475498b 48c9a83260c8 |
line wrap: on
line source
function d = diracDiscr(x_s, x, m_order, s_order, H) % n-dimensional delta function % x_s: source point coordinate vector, e.g. [x, y] or [x, y, z]. % x: cell array of grid point column vectors for each dimension. % m_order: Number of moment conditions % s_order: Number of smoothness conditions % H: cell array of 1D norm matrices dim = length(x_s); d_1D = cell(dim,1); % If 1D, non-cell input is accepted if dim == 1 && ~iscell(x) d = diracDiscr1D(x_s, x, m_order, s_order, H); else for i = 1:dim d_1D{i} = diracDiscr1D(x_s(i), x{i}, m_order, s_order, H{i}); end d = d_1D{dim}; for i = dim-1: -1: 1 % Perform outer product, transpose, and then turn into column vector d = (d_1D{i}*d')'; d = d(:); end end end % Helper function for 1D delta functions function ret = diracDiscr1D(x_s , x , m_order, s_order, H) m = length(x); % Return zeros if x0 is outside grid if(x_s < x(1) || x_s > x(end) ) ret = zeros(size(x)); else fnorm = diag(H); tot_order = m_order+s_order; %This is equiv. to the number of equations solved for S = []; M = []; % Get interior grid spacing middle = floor(m/2); h = x(middle+1) - x(middle); % Find the indices that are within range of of the point source location ind_delta = find(tot_order*h/2 >= abs(x-x_s)); % Ensure that ind_delta is not too long if length(ind_delta) == (tot_order + 2) ind_delta = ind_delta(2:end-1); elseif length(ind_delta) == (tot_order + 1) ind_delta = ind_delta(1:end-1); end % Use first tot_order grid points if length(ind_delta)<tot_order && x_s < x(1) + ceil(tot_order/2)*h; index=1:tot_order; polynomial=(x(1:tot_order)-x(1))/(x(tot_order)-x(1)); x_0=(x_s-x(1))/(x(tot_order)-x(1)); norm=fnorm(1:tot_order)/h; % Use last tot_order grid points elseif length(ind_delta)<tot_order && x_s > x(end) - ceil(tot_order/2)*h; index = length(x)-tot_order+1:length(x); polynomial = (x(end-tot_order+1:end)-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); norm = fnorm(end-tot_order+1:end)/h; x_0 = (x_s-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); % Interior, compensate for round-off errors. elseif length(ind_delta) < tot_order if ind_delta(end)<m ind_delta = [ind_delta; ind_delta(end)+1]; else ind_delta = [ind_delta(1)-1; ind_delta]; end polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); norm = fnorm(ind_delta)/h; index = ind_delta; % Interior else polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); norm = fnorm(ind_delta)/h; index = ind_delta; end h_polynomial = polynomial(2)-polynomial(1); b = zeros(m_order+s_order,1); for i = 1:m_order b(i,1) = x_0^(i-1); end for i = 1:(m_order+s_order) for j = 1:m_order M(j,i) = polynomial(i)^(j-1)*h_polynomial*norm(i); end end for i = 1:(m_order+s_order) for j = 1:s_order S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); end end A = [M;S]; d = A\b; ret = x*0; ret(index) = d/h*h_polynomial; end end