Mercurial > repos > public > sbplib
comparison diracDiscr.m @ 1232:52d774e69b1f feature/dirac_discr
Clean up diracDiscr, remove obsolete tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 19 Nov 2019 13:54:41 -0800 |
parents | 86ee5648e384 |
children | f1806475498b 48c9a83260c8 |
comparison
equal
deleted
inserted
replaced
1229:86ee5648e384 | 1232:52d774e69b1f |
---|---|
29 | 29 |
30 end | 30 end |
31 | 31 |
32 | 32 |
33 % Helper function for 1D delta functions | 33 % Helper function for 1D delta functions |
34 function ret = diracDiscr1D(x_0in , x , m_order, s_order, H) | 34 function ret = diracDiscr1D(x_s , x , m_order, s_order, H) |
35 | 35 |
36 m = length(x); | 36 m = length(x); |
37 | 37 |
38 % Return zeros if x0 is outside grid | 38 % Return zeros if x0 is outside grid |
39 if(x_0in < x(1) || x_0in > x(end) ) | 39 if(x_s < x(1) || x_s > x(end) ) |
40 | 40 |
41 ret = zeros(size(x)); | 41 ret = zeros(size(x)); |
42 | 42 |
43 else | 43 else |
44 | 44 |
45 fnorm = diag(H); | 45 fnorm = diag(H); |
46 eta = abs(x-x_0in); | 46 tot_order = m_order+s_order; %This is equiv. to the number of equations solved for |
47 tot = m_order+s_order; | 47 S = []; |
48 S = []; | 48 M = []; |
49 M = []; | |
50 | 49 |
51 % Get interior grid spacing | 50 % Get interior grid spacing |
52 middle = floor(m/2); | 51 middle = floor(m/2); |
53 h = x(middle+1) - x(middle); | 52 h = x(middle+1) - x(middle); |
54 | 53 |
55 poss = find(tot*h/2 >= eta); | 54 % Find the indices that are within range of of the point source location |
55 ind_delta = find(tot_order*h/2 >= abs(x-x_s)); | |
56 | 56 |
57 % Ensure that poss is not too long | 57 % Ensure that ind_delta is not too long |
58 if length(poss) == (tot + 2) | 58 if length(ind_delta) == (tot_order + 2) |
59 poss = poss(2:end-1); | 59 ind_delta = ind_delta(2:end-1); |
60 elseif length(poss) == (tot + 1) | 60 elseif length(ind_delta) == (tot_order + 1) |
61 poss = poss(1:end-1); | 61 ind_delta = ind_delta(1:end-1); |
62 end | |
63 | |
64 % Use first tot_order grid points | |
65 if length(ind_delta)<tot_order && x_s < x(1) + ceil(tot_order/2)*h; | |
66 index=1:tot_order; | |
67 polynomial=(x(1:tot_order)-x(1))/(x(tot_order)-x(1)); | |
68 x_0=(x_s-x(1))/(x(tot_order)-x(1)); | |
69 norm=fnorm(1:tot_order)/h; | |
70 | |
71 % Use last tot_order grid points | |
72 elseif length(ind_delta)<tot_order && x_s > x(end) - ceil(tot_order/2)*h; | |
73 index = length(x)-tot_order+1:length(x); | |
74 polynomial = (x(end-tot_order+1:end)-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); | |
75 norm = fnorm(end-tot_order+1:end)/h; | |
76 x_0 = (x_s-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); | |
77 | |
78 % Interior, compensate for round-off errors. | |
79 elseif length(ind_delta) < tot_order | |
80 if ind_delta(end)<m | |
81 ind_delta = [ind_delta; ind_delta(end)+1]; | |
82 else | |
83 ind_delta = [ind_delta(1)-1; ind_delta]; | |
84 end | |
85 polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
86 x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
87 norm = fnorm(ind_delta)/h; | |
88 index = ind_delta; | |
89 | |
90 % Interior | |
91 else | |
92 polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
93 x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
94 norm = fnorm(ind_delta)/h; | |
95 index = ind_delta; | |
96 end | |
97 | |
98 h_polynomial = polynomial(2)-polynomial(1); | |
99 b = zeros(m_order+s_order,1); | |
100 | |
101 for i = 1:m_order | |
102 b(i,1) = x_0^(i-1); | |
103 end | |
104 | |
105 for i = 1:(m_order+s_order) | |
106 for j = 1:m_order | |
107 M(j,i) = polynomial(i)^(j-1)*h_polynomial*norm(i); | |
108 end | |
109 end | |
110 | |
111 for i = 1:(m_order+s_order) | |
112 for j = 1:s_order | |
113 S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); | |
114 end | |
115 end | |
116 | |
117 A = [M;S]; | |
118 | |
119 d = A\b; | |
120 ret = x*0; | |
121 ret(index) = d/h*h_polynomial; | |
62 end | 122 end |
63 | |
64 % Use first tot grid points | |
65 if length(poss)<tot && x_0in < x(1) + ceil(tot/2)*h; | |
66 index=1:tot; | |
67 pol=(x(1:tot)-x(1))/(x(tot)-x(1)); | |
68 x_0=(x_0in-x(1))/(x(tot)-x(1)); | |
69 norm=fnorm(1:tot)/h; | |
70 | |
71 % Use last tot grid points | |
72 elseif length(poss)<tot && x_0in > x(end) - ceil(tot/2)*h; | |
73 index = length(x)-tot+1:length(x); | |
74 pol = (x(end-tot+1:end)-x(end-tot+1))/(x(end)-x(end-tot+1)); | |
75 norm = fnorm(end-tot+1:end)/h; | |
76 x_0 = (x_0in-x(end-tot+1))/(x(end)-x(end-tot+1)); | |
77 | |
78 % Interior, compensate for round-off errors. | |
79 elseif length(poss) < tot | |
80 if poss(end)<m | |
81 poss = [poss; poss(end)+1]; | |
82 else | |
83 poss = [poss(1)-1; poss]; | |
84 end | |
85 pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1))); | |
86 x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1))); | |
87 norm = fnorm(poss)/h; | |
88 index = poss; | |
89 | |
90 % Interior | |
91 else | |
92 pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1))); | |
93 x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1))); | |
94 norm = fnorm(poss)/h; | |
95 index = poss; | |
96 end | |
97 | |
98 h_pol = pol(2)-pol(1); | |
99 b = zeros(m_order+s_order,1); | |
100 | |
101 for i = 1:m_order | |
102 b(i,1) = x_0^(i-1); | |
103 end | |
104 | |
105 for i = 1:(m_order+s_order) | |
106 for j = 1:m_order | |
107 M(j,i) = pol(i)^(j-1)*h_pol*norm(i); | |
108 end | |
109 end | |
110 | |
111 for i = 1:(m_order+s_order) | |
112 for j = 1:s_order | |
113 S(j,i) = (-1)^(i-1)*pol(i)^(j-1); | |
114 end | |
115 end | |
116 | |
117 A = [M;S]; | |
118 | |
119 d = A\b; | |
120 ret = x*0; | |
121 ret(index) = d/h*h_pol; | |
122 end | |
123 | 123 |
124 end | 124 end |
125 | 125 |
126 | 126 |
127 | 127 |