Mercurial > repos > public > sbplib
diff diracDiscr.m @ 1232:52d774e69b1f feature/dirac_discr
Clean up diracDiscr, remove obsolete tests.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 19 Nov 2019 13:54:41 -0800 |
parents | 86ee5648e384 |
children | f1806475498b 48c9a83260c8 |
line wrap: on
line diff
--- a/diracDiscr.m Tue Nov 19 10:56:57 2019 -0800 +++ b/diracDiscr.m Tue Nov 19 13:54:41 2019 -0800 @@ -31,95 +31,95 @@ % Helper function for 1D delta functions -function ret = diracDiscr1D(x_0in , x , m_order, s_order, H) +function ret = diracDiscr1D(x_s , x , m_order, s_order, H) -m = length(x); + m = length(x); -% Return zeros if x0 is outside grid -if(x_0in < x(1) || x_0in > x(end) ) + % Return zeros if x0 is outside grid + if(x_s < x(1) || x_s > x(end) ) - ret = zeros(size(x)); + ret = zeros(size(x)); -else + else - fnorm = diag(H); - eta = abs(x-x_0in); - tot = m_order+s_order; - S = []; - M = []; + fnorm = diag(H); + tot_order = m_order+s_order; %This is equiv. to the number of equations solved for + S = []; + M = []; - % Get interior grid spacing - middle = floor(m/2); - h = x(middle+1) - x(middle); + % Get interior grid spacing + middle = floor(m/2); + h = x(middle+1) - x(middle); - poss = find(tot*h/2 >= eta); + % Find the indices that are within range of of the point source location + ind_delta = find(tot_order*h/2 >= abs(x-x_s)); - % Ensure that poss is not too long - if length(poss) == (tot + 2) - poss = poss(2:end-1); - elseif length(poss) == (tot + 1) - poss = poss(1:end-1); - end + % Ensure that ind_delta is not too long + if length(ind_delta) == (tot_order + 2) + ind_delta = ind_delta(2:end-1); + elseif length(ind_delta) == (tot_order + 1) + ind_delta = ind_delta(1:end-1); + end - % Use first tot grid points - if length(poss)<tot && x_0in < x(1) + ceil(tot/2)*h; - index=1:tot; - pol=(x(1:tot)-x(1))/(x(tot)-x(1)); - x_0=(x_0in-x(1))/(x(tot)-x(1)); - norm=fnorm(1:tot)/h; + % Use first tot_order grid points + if length(ind_delta)<tot_order && x_s < x(1) + ceil(tot_order/2)*h; + index=1:tot_order; + polynomial=(x(1:tot_order)-x(1))/(x(tot_order)-x(1)); + x_0=(x_s-x(1))/(x(tot_order)-x(1)); + norm=fnorm(1:tot_order)/h; - % Use last tot grid points - elseif length(poss)<tot && x_0in > x(end) - ceil(tot/2)*h; - index = length(x)-tot+1:length(x); - pol = (x(end-tot+1:end)-x(end-tot+1))/(x(end)-x(end-tot+1)); - norm = fnorm(end-tot+1:end)/h; - x_0 = (x_0in-x(end-tot+1))/(x(end)-x(end-tot+1)); + % Use last tot_order grid points + elseif length(ind_delta)<tot_order && x_s > x(end) - ceil(tot_order/2)*h; + index = length(x)-tot_order+1:length(x); + polynomial = (x(end-tot_order+1:end)-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); + norm = fnorm(end-tot_order+1:end)/h; + x_0 = (x_s-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); - % Interior, compensate for round-off errors. - elseif length(poss) < tot - if poss(end)<m - poss = [poss; poss(end)+1]; + % Interior, compensate for round-off errors. + elseif length(ind_delta) < tot_order + if ind_delta(end)<m + ind_delta = [ind_delta; ind_delta(end)+1]; + else + ind_delta = [ind_delta(1)-1; ind_delta]; + end + polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); + x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); + norm = fnorm(ind_delta)/h; + index = ind_delta; + + % Interior else - poss = [poss(1)-1; poss]; + polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); + x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); + norm = fnorm(ind_delta)/h; + index = ind_delta; end - pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1))); - x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1))); - norm = fnorm(poss)/h; - index = poss; - % Interior - else - pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1))); - x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1))); - norm = fnorm(poss)/h; - index = poss; - end - - h_pol = pol(2)-pol(1); - b = zeros(m_order+s_order,1); + h_polynomial = polynomial(2)-polynomial(1); + b = zeros(m_order+s_order,1); - for i = 1:m_order - b(i,1) = x_0^(i-1); - end + for i = 1:m_order + b(i,1) = x_0^(i-1); + end - for i = 1:(m_order+s_order) - for j = 1:m_order - M(j,i) = pol(i)^(j-1)*h_pol*norm(i); + for i = 1:(m_order+s_order) + for j = 1:m_order + M(j,i) = polynomial(i)^(j-1)*h_polynomial*norm(i); + end end - end - for i = 1:(m_order+s_order) - for j = 1:s_order - S(j,i) = (-1)^(i-1)*pol(i)^(j-1); + for i = 1:(m_order+s_order) + for j = 1:s_order + S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); + end end - end - A = [M;S]; + A = [M;S]; - d = A\b; - ret = x*0; - ret(index) = d/h*h_pol; -end + d = A\b; + ret = x*0; + ret(index) = d/h*h_polynomial; + end end