Mercurial > repos > public > sbplib
diff +scheme/Hypsyst3d.m @ 354:dbac99d2c318 feature/hypsyst
Removed inv(Vi) to save time
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Mon, 28 Nov 2016 08:46:28 +0100 |
parents | 9b3d7fc61a36 |
children | 69b078cf8072 |
line wrap: on
line diff
--- a/+scheme/Hypsyst3d.m Thu Nov 10 20:49:25 2016 +0100 +++ b/+scheme/Hypsyst3d.m Mon Nov 28 08:46:28 2016 +0100 @@ -14,6 +14,7 @@ H % Discrete norm % Norms in the x, y and z directions + Hx, Hy, Hz Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y, I_z, I_N e_w, e_e, e_s, e_n, e_b, e_t @@ -22,8 +23,9 @@ methods - function obj = Hypsyst3d(m, lim, order, A, B,C, E, params) + function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator) default_arg('E', []) + default_arg('operatpr',[]) xlim = lim{1}; ylim = lim{2}; zlim = lim{3}; @@ -32,18 +34,25 @@ m = [m m m]; end - obj.A=A; - obj.B=B; - obj.C=C; - obj.E=E; + obj.A = A; + obj.B = B; + obj.C = C; + obj.E = E; m_x = m(1); m_y = m(2); m_z=m(3); obj.params = params; - ops_x = sbp.D2Standard(m_x,xlim,order); - ops_y = sbp.D2Standard(m_y,ylim,order); - ops_z = sbp.D2Standard(m_z,zlim,order); + switch operator + case 'upwind' + ops_x = sbp.D1Upwind(m_x,xlim,order); + ops_y = sbp.D1Upwind(m_y,ylim,order); + ops_z = sbp.D1Upwind(m_z,zlim,order); + otherwise + ops_x = sbp.D2Standard(m_x,xlim,order); + ops_y = sbp.D2Standard(m_y,ylim,order); + ops_z = sbp.D2Standard(m_z,zlim,order); + end obj.x = ops_x.x; obj.y = ops_y.x; @@ -53,14 +62,14 @@ obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); - obj.Yx=kr(obj.y,ones(m_z,1)); - obj.Zx=kr(ones(m_y,1),obj.z); - - obj.Xy=kr(obj.x,ones(m_z,1)); - obj.Zy=kr(ones(m_x,1),obj.z); + obj.Yx = kr(obj.y,ones(m_z,1)); + obj.Zx = kr(ones(m_y,1),obj.z); - obj.Xz=kr(obj.x,ones(m_y,1)); - obj.Yz=kr(ones(m_z,1),obj.y); + obj.Xy = kr(obj.x,ones(m_z,1)); + obj.Zy = kr(ones(m_x,1),obj.z); + + obj.Xz = kr(obj.x,ones(m_y,1)); + obj.Yz = kr(ones(m_z,1),obj.y); obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); @@ -76,14 +85,14 @@ obj.I_y = I_y; I_z = speye(m_z); obj.I_z = I_z; - + I_N=kr(I_n,I_x,I_y,I_z); - D1_x = kr(I_n, ops_x.D1, I_y,I_z); obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); - D1_y = kr(I_n, I_x, ops_y.D1,I_z); + obj.Hx = ops_x.H; obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); - D1_z = kr(I_n, I_x, I_y,ops_z.D1); + obj.Hy = ops_y.H obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); + obj.Hz = ops_z.H; obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); @@ -92,11 +101,37 @@ obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); - obj.m=m; - obj.h=[ops_x.h ops_y.h ops_x.h]; - obj.order=order; + obj.m = m; + obj.h = [ops_x.h ops_y.h ops_x.h]; + obj.order = order; - obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; + switch operator + case 'upwind' + alphaA = max(eig(A(params,obj.x(end),obj.y(end),obj.z(end)))); + alphaB = max(eig(B(params,obj.x(end),obj.y(end),obj.z(end)))); + alphaC = max(eig(C(params,obj.x(end),obj.y(end),obj.z(end)))); + + Ap = (obj.Aevaluated+alphaA*I_N)/2; + Am = (obj.Aevaluated-alphaA*I_N)/2; + Bp = (obj.Bevaluated+alphaB*I_N)/2; + Bm = (obj.Bevaluated-alphaB*I_N)/2; + Cp = (obj.Cevaluated+alphaC*I_N)/2; + Cm = (obj.Cevaluated-alphaC*I_N)/2; + + Dpx = kr(I_n, ops_x.Dp, I_y,I_z); + Dmx = kr(I_n, ops_x.Dm, I_y,I_z); + Dpy = kr(I_n, I_x, ops_y.Dp,I_z); + Dmy = kr(I_n, I_x, ops_y.Dm,I_z); + Dpz = kr(I_n, I_x, I_y,ops_z.Dp); + Dmz = kr(I_n, I_x, I_y,ops_z.Dm); + + obj.D=-Am*Dpx-Ap*Dmx-Bm*Dpy-Bp*Dmy-Cm*Dpz-Cp*Dmz-obj.Eevaluated; + otherwise + D1_x = kr(I_n, ops_x.D1, I_y,I_z); + D1_y = kr(I_n, I_x, ops_y.D1,I_z); + D1_z = kr(I_n, I_x, I_y,ops_z.D1); + obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; + end end % Closure functions return the opertors applied to the own doamin to close the boundary @@ -110,9 +145,9 @@ switch type case{'c','char'} - [closure,penalty]=boundary_condition_char(obj,BM); + [closure,penalty] = boundary_condition_char(obj,BM); case{'general'} - [closure,penalty]=boundary_condition_general(obj,BM,boundary,L); + [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); otherwise error('No such boundary condition') end @@ -127,14 +162,14 @@ end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) - params=obj.params; - side=max(length(X),length(Y)); + params = obj.params; + side = max(length(X),length(Y)); if isa(mat,'function_handle') - [rows,cols]=size(mat(params,0,0,0)); - matVec=mat(params,X',Y',Z'); + [rows,cols] = size(mat(params,0,0,0)); + matVec = mat(params,X',Y',Z'); matVec=sparse(matVec); else - matVec=mat; + matVec = mat; [rows,cols]=size(matVec); side=max(length(X),length(Y)); cols=cols/side; @@ -215,17 +250,17 @@ switch BM.boundpos case {'l'} - tau=sparse(obj.n*side,pos); - Vi_plus=Vi(1:pos,:); - tau(1:pos,:)=-abs(D(1:pos,1:pos)); - closure=Hi*e_*V*tau*Vi_plus*e_'; - penalty=-Hi*e_*V*tau*Vi_plus; + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + closure = Hi*e_*V*tau*Vi_plus*e_'; + penalty = -Hi*e_*V*tau*Vi_plus; case {'r'} - tau=sparse(obj.n*side,neg); - tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); - Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); - closure=Hi*e_*V*tau*Vi_minus*e_'; - penalty=-Hi*e_*V*tau*Vi_minus; + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + closure = Hi*e_*V*tau*Vi_minus*e_'; + penalty = -Hi*e_*V*tau*Vi_minus; end end @@ -241,80 +276,85 @@ D=BM.D; e_=BM.e_; switch boundary - case {'w','W','west'} - L=obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); + case {'w','W','west'} + L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); case {'e','E','east'} - L=obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); + L = obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); case {'s','S','south'} - L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); + L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); case {'n','N','north'} - L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); + L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); case {'b','B','bottom'} - L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); - case {'t','T','top'} - L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); + L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); + case {'t','T','top'} + L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); end switch BM.boundpos case {'l'} - tau=sparse(obj.n*side,pos); - Vi_plus=Vi(1:pos,:); - Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); - V_plus=V(:,1:pos); - V_minus=V(:,(pos+zeroval)+1:obj.n*side); + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); - tau(1:pos,:)=-abs(D(1:pos,1:pos)); - R=-inv(L*V_plus)*(L*V_minus); - closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; - penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + R = -inv(L*V_plus)*(L*V_minus); + closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} - tau=sparse(obj.n*side,neg); - tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); - Vi_plus=Vi(1:pos,:); - Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); - V_plus=V(:,1:pos); - V_minus=V(:,(pos+zeroval)+1:obj.n*side); - R=-inv(L*V_minus)*(L*V_plus); - closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; - penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + R = -inv(L*V_minus)*(L*V_plus); + closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) - params=obj.params; + params = obj.params; syms xs ys zs - [V, D]=eig(mat(params,xs,ys,zs)); - xs=x; - ys=y; - zs=z; + [V, D] = eig(mat(params,xs,ys,zs)); + Vi=inv(V); + xs = x; + ys = y; + zs = z; - side=max(length(x),length(y)); - Dret=zeros(obj.n,side*obj.n); - Vret=zeros(obj.n,side*obj.n); + side = max(length(x),length(y)); + Dret = zeros(obj.n,side*obj.n); + Vret = zeros(obj.n,side*obj.n); + Viret= zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n - Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); - Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); + Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); + Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end - D=sparse(Dret); - V=sparse(Vret); - V=obj.evaluateCoefficientMatrix(V,x,y,z); - D=obj.evaluateCoefficientMatrix(D,x,y,z); - DD=diag(D); + D = sparse(Dret); + V = sparse(Vret); + Vi = sparse(Viret); + V = obj.evaluateCoefficientMatrix(V,x,y,z); + Vi= obj.evaluateCoefficientMatrix(Vi,x,y,z); + D = obj.evaluateCoefficientMatrix(D,x,y,z); + DD = diag(D); - poseig=(DD>0); - zeroeig=(DD==0); - negeig=(DD<0); + poseig = (DD>0); + zeroeig = (DD==0); + negeig = (DD<0); - D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); - V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; - Vi=inv(V); - signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); + V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi= [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; + signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; end end end \ No newline at end of file