Mercurial > repos > public > sbplib
view +scheme/Hypsyst3d.m @ 352:9b3d7fc61a36 feature/hypsyst
Changed operator in Utux
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Thu, 10 Nov 2016 20:47:40 +0100 |
parents | 5d5652fe826a |
children | dbac99d2c318 |
line wrap: on
line source
classdef Hypsyst3d < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system h % Grid spacing x, y, z % Grid X, Y, Z% Values of x and y for each grid point Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces order % Order accuracy for the approximation D % non-stabalized scheme operator A, B, C, E Aevaluated,Bevaluated,Cevaluated, Eevaluated H % Discrete norm % Norms in the x, y and z directions Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y, I_z, I_N e_w, e_e, e_s, e_n, e_b, e_t params %parameters for the coeficient matrice end methods function obj = Hypsyst3d(m, lim, order, A, B,C, E, params) default_arg('E', []) xlim = lim{1}; ylim = lim{2}; zlim = lim{3}; if length(m) == 1 m = [m m m]; end obj.A=A; obj.B=B; obj.C=C; obj.E=E; m_x = m(1); m_y = m(2); m_z=m(3); obj.params = params; ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); ops_z = sbp.D2Standard(m_z,zlim,order); obj.x = ops_x.x; obj.y = ops_y.x; obj.z = ops_z.x; obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa? obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); obj.Yx=kr(obj.y,ones(m_z,1)); obj.Zx=kr(ones(m_y,1),obj.z); obj.Xy=kr(obj.x,ones(m_z,1)); obj.Zy=kr(ones(m_x,1),obj.z); obj.Xz=kr(obj.x,ones(m_y,1)); obj.Yz=kr(ones(m_z,1),obj.y); obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); obj.n = length(A(obj.params,0,0,0)); I_n = eye(obj.n); I_x = speye(m_x); obj.I_x = I_x; I_y = speye(m_y); obj.I_y = I_y; I_z = speye(m_z); obj.I_z = I_z; D1_x = kr(I_n, ops_x.D1, I_y,I_z); obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); D1_y = kr(I_n, I_x, ops_y.D1,I_z); obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); D1_z = kr(I_n, I_x, I_y,ops_z.D1); obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); obj.m=m; obj.h=[ops_x.h ops_y.h ops_x.h]; obj.order=order; obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); BM=boundary_matrices(obj,boundary); switch type case{'c','char'} [closure,penalty]=boundary_condition_char(obj,BM); case{'general'} [closure,penalty]=boundary_condition_general(obj,BM,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.m; end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) params=obj.params; side=max(length(X),length(Y)); if isa(mat,'function_handle') [rows,cols]=size(mat(params,0,0,0)); matVec=mat(params,X',Y',Z'); matVec=sparse(matVec); else matVec=mat; [rows,cols]=size(matVec); side=max(length(X),length(Y)); cols=cols/side; end ret=cell(rows,cols); for ii=1:rows for jj=1:cols ret{ii,jj}=diag(matVec(ii,(jj-1)*side+1:jj*side)); end end ret=cell2mat(ret); end function [BM]=boundary_matrices(obj,boundary) params=obj.params; switch boundary case {'w','W','west'} BM.e_=obj.e_w; mat=obj.A; BM.boundpos='l'; BM.Hi=obj.Hxi; [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx); BM.side=length(obj.Yx); case {'e','E','east'} BM.e_=obj.e_e; mat=obj.A; BM.boundpos='r'; BM.Hi=obj.Hxi; [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx); BM.side=length(obj.Yx); case {'s','S','south'} BM.e_=obj.e_s; mat=obj.B; BM.boundpos='l'; BM.Hi=obj.Hyi; [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy); BM.side=length(obj.Xy); case {'n','N','north'} BM.e_=obj.e_n; mat=obj.B; BM.boundpos='r'; BM.Hi=obj.Hyi; [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy); BM.side=length(obj.Xy); case{'b','B','Bottom'} BM.e_=obj.e_b; mat=obj.C; BM.boundpos='l'; BM.Hi=obj.Hzi; [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1)); BM.side=length(obj.Xz); case{'t','T','Top'} BM.e_=obj.e_t; mat=obj.C; BM.boundpos='r'; BM.Hi=obj.Hzi; [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end)); BM.side=length(obj.Xz); end BM.pos=signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); end function [closure, penalty]=boundary_condition_char(obj,BM) side = BM.side; pos = BM.pos; neg = BM.neg; zeroval=BM.zeroval; V = BM.V; Vi = BM.Vi; Hi=BM.Hi; D=BM.D; e_=BM.e_; switch BM.boundpos case {'l'} tau=sparse(obj.n*side,pos); Vi_plus=Vi(1:pos,:); tau(1:pos,:)=-abs(D(1:pos,1:pos)); closure=Hi*e_*V*tau*Vi_plus*e_'; penalty=-Hi*e_*V*tau*Vi_plus; case {'r'} tau=sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); closure=Hi*e_*V*tau*Vi_minus*e_'; penalty=-Hi*e_*V*tau*Vi_minus; end end function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L) side = BM.side; pos = BM.pos; neg = BM.neg; zeroval=BM.zeroval; V = BM.V; Vi = BM.Vi; Hi=BM.Hi; D=BM.D; e_=BM.e_; switch boundary case {'w','W','west'} L=obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); case {'e','E','east'} L=obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); case {'s','S','south'} L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); case {'n','N','north'} L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); case {'b','B','bottom'} L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); case {'t','T','top'} L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); end switch BM.boundpos case {'l'} tau=sparse(obj.n*side,pos); Vi_plus=Vi(1:pos,:); Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); V_plus=V(:,1:pos); V_minus=V(:,(pos+zeroval)+1:obj.n*side); tau(1:pos,:)=-abs(D(1:pos,1:pos)); R=-inv(L*V_plus)*(L*V_minus); closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau=sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus=Vi(1:pos,:); Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); V_plus=V(:,1:pos); V_minus=V(:,(pos+zeroval)+1:obj.n*side); R=-inv(L*V_minus)*(L*V_plus); closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; end end function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) params=obj.params; syms xs ys zs [V, D]=eig(mat(params,xs,ys,zs)); xs=x; ys=y; zs=z; side=max(length(x),length(y)); Dret=zeros(obj.n,side*obj.n); Vret=zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); end end D=sparse(Dret); V=sparse(Vret); V=obj.evaluateCoefficientMatrix(V,x,y,z); D=obj.evaluateCoefficientMatrix(D,x,y,z); DD=diag(D); poseig=(DD>0); zeroeig=(DD==0); negeig=(DD<0); D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi=inv(V); signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; end end end