Mercurial > repos > public > sbplib
comparison +scheme/Hypsyst3d.m @ 354:dbac99d2c318 feature/hypsyst
Removed inv(Vi) to save time
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Mon, 28 Nov 2016 08:46:28 +0100 |
parents | 9b3d7fc61a36 |
children | 69b078cf8072 |
comparison
equal
deleted
inserted
replaced
353:fd4f1c80755d | 354:dbac99d2c318 |
---|---|
12 A, B, C, E | 12 A, B, C, E |
13 Aevaluated,Bevaluated,Cevaluated, Eevaluated | 13 Aevaluated,Bevaluated,Cevaluated, Eevaluated |
14 | 14 |
15 H % Discrete norm | 15 H % Discrete norm |
16 % Norms in the x, y and z directions | 16 % Norms in the x, y and z directions |
17 Hx, Hy, Hz | |
17 Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | 18 Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. |
18 I_x,I_y, I_z, I_N | 19 I_x,I_y, I_z, I_N |
19 e_w, e_e, e_s, e_n, e_b, e_t | 20 e_w, e_e, e_s, e_n, e_b, e_t |
20 params %parameters for the coeficient matrice | 21 params %parameters for the coeficient matrice |
21 end | 22 end |
22 | 23 |
23 | 24 |
24 methods | 25 methods |
25 function obj = Hypsyst3d(m, lim, order, A, B,C, E, params) | 26 function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator) |
26 default_arg('E', []) | 27 default_arg('E', []) |
28 default_arg('operatpr',[]) | |
27 xlim = lim{1}; | 29 xlim = lim{1}; |
28 ylim = lim{2}; | 30 ylim = lim{2}; |
29 zlim = lim{3}; | 31 zlim = lim{3}; |
30 | 32 |
31 if length(m) == 1 | 33 if length(m) == 1 |
32 m = [m m m]; | 34 m = [m m m]; |
33 end | 35 end |
34 | 36 |
35 obj.A=A; | 37 obj.A = A; |
36 obj.B=B; | 38 obj.B = B; |
37 obj.C=C; | 39 obj.C = C; |
38 obj.E=E; | 40 obj.E = E; |
39 m_x = m(1); | 41 m_x = m(1); |
40 m_y = m(2); | 42 m_y = m(2); |
41 m_z=m(3); | 43 m_z=m(3); |
42 obj.params = params; | 44 obj.params = params; |
43 | 45 |
44 ops_x = sbp.D2Standard(m_x,xlim,order); | 46 switch operator |
45 ops_y = sbp.D2Standard(m_y,ylim,order); | 47 case 'upwind' |
46 ops_z = sbp.D2Standard(m_z,zlim,order); | 48 ops_x = sbp.D1Upwind(m_x,xlim,order); |
49 ops_y = sbp.D1Upwind(m_y,ylim,order); | |
50 ops_z = sbp.D1Upwind(m_z,zlim,order); | |
51 otherwise | |
52 ops_x = sbp.D2Standard(m_x,xlim,order); | |
53 ops_y = sbp.D2Standard(m_y,ylim,order); | |
54 ops_z = sbp.D2Standard(m_z,zlim,order); | |
55 end | |
47 | 56 |
48 obj.x = ops_x.x; | 57 obj.x = ops_x.x; |
49 obj.y = ops_y.x; | 58 obj.y = ops_y.x; |
50 obj.z = ops_z.x; | 59 obj.z = ops_z.x; |
51 | 60 |
52 obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa? | 61 obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa? |
53 obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); | 62 obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); |
54 obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); | 63 obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); |
55 | 64 |
56 obj.Yx=kr(obj.y,ones(m_z,1)); | 65 obj.Yx = kr(obj.y,ones(m_z,1)); |
57 obj.Zx=kr(ones(m_y,1),obj.z); | 66 obj.Zx = kr(ones(m_y,1),obj.z); |
58 | 67 |
59 obj.Xy=kr(obj.x,ones(m_z,1)); | 68 obj.Xy = kr(obj.x,ones(m_z,1)); |
60 obj.Zy=kr(ones(m_x,1),obj.z); | 69 obj.Zy = kr(ones(m_x,1),obj.z); |
61 | 70 |
62 obj.Xz=kr(obj.x,ones(m_y,1)); | 71 obj.Xz = kr(obj.x,ones(m_y,1)); |
63 obj.Yz=kr(ones(m_z,1),obj.y); | 72 obj.Yz = kr(ones(m_z,1),obj.y); |
64 | 73 |
65 obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); | 74 obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); |
66 obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); | 75 obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); |
67 obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); | 76 obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); |
68 obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); | 77 obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); |
74 obj.I_x = I_x; | 83 obj.I_x = I_x; |
75 I_y = speye(m_y); | 84 I_y = speye(m_y); |
76 obj.I_y = I_y; | 85 obj.I_y = I_y; |
77 I_z = speye(m_z); | 86 I_z = speye(m_z); |
78 obj.I_z = I_z; | 87 obj.I_z = I_z; |
79 | 88 I_N=kr(I_n,I_x,I_y,I_z); |
80 | 89 |
81 D1_x = kr(I_n, ops_x.D1, I_y,I_z); | |
82 obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); | 90 obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); |
83 D1_y = kr(I_n, I_x, ops_y.D1,I_z); | 91 obj.Hx = ops_x.H; |
84 obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); | 92 obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); |
85 D1_z = kr(I_n, I_x, I_y,ops_z.D1); | 93 obj.Hy = ops_y.H |
86 obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); | 94 obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); |
95 obj.Hz = ops_z.H; | |
87 | 96 |
88 obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); | 97 obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); |
89 obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); | 98 obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); |
90 obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); | 99 obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); |
91 obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); | 100 obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); |
92 obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); | 101 obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); |
93 obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); | 102 obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); |
94 | 103 |
95 obj.m=m; | 104 obj.m = m; |
96 obj.h=[ops_x.h ops_y.h ops_x.h]; | 105 obj.h = [ops_x.h ops_y.h ops_x.h]; |
97 obj.order=order; | 106 obj.order = order; |
98 | 107 |
99 obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; | 108 switch operator |
109 case 'upwind' | |
110 alphaA = max(eig(A(params,obj.x(end),obj.y(end),obj.z(end)))); | |
111 alphaB = max(eig(B(params,obj.x(end),obj.y(end),obj.z(end)))); | |
112 alphaC = max(eig(C(params,obj.x(end),obj.y(end),obj.z(end)))); | |
113 | |
114 Ap = (obj.Aevaluated+alphaA*I_N)/2; | |
115 Am = (obj.Aevaluated-alphaA*I_N)/2; | |
116 Bp = (obj.Bevaluated+alphaB*I_N)/2; | |
117 Bm = (obj.Bevaluated-alphaB*I_N)/2; | |
118 Cp = (obj.Cevaluated+alphaC*I_N)/2; | |
119 Cm = (obj.Cevaluated-alphaC*I_N)/2; | |
120 | |
121 Dpx = kr(I_n, ops_x.Dp, I_y,I_z); | |
122 Dmx = kr(I_n, ops_x.Dm, I_y,I_z); | |
123 Dpy = kr(I_n, I_x, ops_y.Dp,I_z); | |
124 Dmy = kr(I_n, I_x, ops_y.Dm,I_z); | |
125 Dpz = kr(I_n, I_x, I_y,ops_z.Dp); | |
126 Dmz = kr(I_n, I_x, I_y,ops_z.Dm); | |
127 | |
128 obj.D=-Am*Dpx-Ap*Dmx-Bm*Dpy-Bp*Dmy-Cm*Dpz-Cp*Dmz-obj.Eevaluated; | |
129 otherwise | |
130 D1_x = kr(I_n, ops_x.D1, I_y,I_z); | |
131 D1_y = kr(I_n, I_x, ops_y.D1,I_z); | |
132 D1_z = kr(I_n, I_x, I_y,ops_z.D1); | |
133 obj.D=-obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; | |
134 end | |
100 end | 135 end |
101 | 136 |
102 % Closure functions return the opertors applied to the own doamin to close the boundary | 137 % Closure functions return the opertors applied to the own doamin to close the boundary |
103 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | 138 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. |
104 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 139 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
108 default_arg('type','char'); | 143 default_arg('type','char'); |
109 BM=boundary_matrices(obj,boundary); | 144 BM=boundary_matrices(obj,boundary); |
110 | 145 |
111 switch type | 146 switch type |
112 case{'c','char'} | 147 case{'c','char'} |
113 [closure,penalty]=boundary_condition_char(obj,BM); | 148 [closure,penalty] = boundary_condition_char(obj,BM); |
114 case{'general'} | 149 case{'general'} |
115 [closure,penalty]=boundary_condition_general(obj,BM,boundary,L); | 150 [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); |
116 otherwise | 151 otherwise |
117 error('No such boundary condition') | 152 error('No such boundary condition') |
118 end | 153 end |
119 end | 154 end |
120 | 155 |
125 function N = size(obj) | 160 function N = size(obj) |
126 N = obj.m; | 161 N = obj.m; |
127 end | 162 end |
128 | 163 |
129 function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) | 164 function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) |
130 params=obj.params; | 165 params = obj.params; |
131 side=max(length(X),length(Y)); | 166 side = max(length(X),length(Y)); |
132 if isa(mat,'function_handle') | 167 if isa(mat,'function_handle') |
133 [rows,cols]=size(mat(params,0,0,0)); | 168 [rows,cols] = size(mat(params,0,0,0)); |
134 matVec=mat(params,X',Y',Z'); | 169 matVec = mat(params,X',Y',Z'); |
135 matVec=sparse(matVec); | 170 matVec=sparse(matVec); |
136 else | 171 else |
137 matVec=mat; | 172 matVec = mat; |
138 [rows,cols]=size(matVec); | 173 [rows,cols]=size(matVec); |
139 side=max(length(X),length(Y)); | 174 side=max(length(X),length(Y)); |
140 cols=cols/side; | 175 cols=cols/side; |
141 end | 176 end |
142 ret=cell(rows,cols); | 177 ret=cell(rows,cols); |
213 D=BM.D; | 248 D=BM.D; |
214 e_=BM.e_; | 249 e_=BM.e_; |
215 | 250 |
216 switch BM.boundpos | 251 switch BM.boundpos |
217 case {'l'} | 252 case {'l'} |
218 tau=sparse(obj.n*side,pos); | 253 tau = sparse(obj.n*side,pos); |
219 Vi_plus=Vi(1:pos,:); | 254 Vi_plus = Vi(1:pos,:); |
220 tau(1:pos,:)=-abs(D(1:pos,1:pos)); | 255 tau(1:pos,:) = -abs(D(1:pos,1:pos)); |
221 closure=Hi*e_*V*tau*Vi_plus*e_'; | 256 closure = Hi*e_*V*tau*Vi_plus*e_'; |
222 penalty=-Hi*e_*V*tau*Vi_plus; | 257 penalty = -Hi*e_*V*tau*Vi_plus; |
223 case {'r'} | 258 case {'r'} |
224 tau=sparse(obj.n*side,neg); | 259 tau = sparse(obj.n*side,neg); |
225 tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | 260 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); |
226 Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); | 261 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); |
227 closure=Hi*e_*V*tau*Vi_minus*e_'; | 262 closure = Hi*e_*V*tau*Vi_minus*e_'; |
228 penalty=-Hi*e_*V*tau*Vi_minus; | 263 penalty = -Hi*e_*V*tau*Vi_minus; |
229 end | 264 end |
230 end | 265 end |
231 | 266 |
232 | 267 |
233 function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L) | 268 function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L) |
239 Vi = BM.Vi; | 274 Vi = BM.Vi; |
240 Hi=BM.Hi; | 275 Hi=BM.Hi; |
241 D=BM.D; | 276 D=BM.D; |
242 e_=BM.e_; | 277 e_=BM.e_; |
243 switch boundary | 278 switch boundary |
244 case {'w','W','west'} | 279 case {'w','W','west'} |
245 L=obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); | 280 L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); |
246 case {'e','E','east'} | 281 case {'e','E','east'} |
247 L=obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); | 282 L = obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); |
248 case {'s','S','south'} | 283 case {'s','S','south'} |
249 L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); | 284 L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); |
250 case {'n','N','north'} | 285 case {'n','N','north'} |
251 L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); | 286 L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); |
252 case {'b','B','bottom'} | 287 case {'b','B','bottom'} |
253 L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); | 288 L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); |
254 case {'t','T','top'} | 289 case {'t','T','top'} |
255 L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); | 290 L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); |
256 end | 291 end |
257 | 292 |
258 switch BM.boundpos | 293 switch BM.boundpos |
259 case {'l'} | 294 case {'l'} |
260 tau=sparse(obj.n*side,pos); | 295 tau = sparse(obj.n*side,pos); |
261 Vi_plus=Vi(1:pos,:); | 296 Vi_plus = Vi(1:pos,:); |
262 Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); | 297 Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); |
263 V_plus=V(:,1:pos); | 298 V_plus = V(:,1:pos); |
264 V_minus=V(:,(pos+zeroval)+1:obj.n*side); | 299 V_minus = V(:,(pos+zeroval)+1:obj.n*side); |
265 | 300 |
266 tau(1:pos,:)=-abs(D(1:pos,1:pos)); | 301 tau(1:pos,:) = -abs(D(1:pos,1:pos)); |
267 R=-inv(L*V_plus)*(L*V_minus); | 302 R = -inv(L*V_plus)*(L*V_minus); |
268 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | 303 closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; |
269 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; | 304 penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; |
270 case {'r'} | 305 case {'r'} |
271 tau=sparse(obj.n*side,neg); | 306 tau = sparse(obj.n*side,neg); |
272 tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | 307 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); |
273 Vi_plus=Vi(1:pos,:); | 308 Vi_plus = Vi(1:pos,:); |
274 Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); | 309 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); |
275 | 310 |
276 V_plus=V(:,1:pos); | 311 V_plus = V(:,1:pos); |
277 V_minus=V(:,(pos+zeroval)+1:obj.n*side); | 312 V_minus = V(:,(pos+zeroval)+1:obj.n*side); |
278 R=-inv(L*V_minus)*(L*V_plus); | 313 R = -inv(L*V_minus)*(L*V_plus); |
279 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | 314 closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; |
280 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; | 315 penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; |
281 end | 316 end |
282 end | 317 end |
283 | 318 |
284 | 319 |
285 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) | 320 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) |
286 params=obj.params; | 321 params = obj.params; |
287 syms xs ys zs | 322 syms xs ys zs |
288 [V, D]=eig(mat(params,xs,ys,zs)); | 323 [V, D] = eig(mat(params,xs,ys,zs)); |
289 xs=x; | 324 Vi=inv(V); |
290 ys=y; | 325 xs = x; |
291 zs=z; | 326 ys = y; |
292 | 327 zs = z; |
293 | 328 |
294 side=max(length(x),length(y)); | 329 |
295 Dret=zeros(obj.n,side*obj.n); | 330 side = max(length(x),length(y)); |
296 Vret=zeros(obj.n,side*obj.n); | 331 Dret = zeros(obj.n,side*obj.n); |
332 Vret = zeros(obj.n,side*obj.n); | |
333 Viret= zeros(obj.n,side*obj.n); | |
297 for ii=1:obj.n | 334 for ii=1:obj.n |
298 for jj=1:obj.n | 335 for jj=1:obj.n |
299 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); | 336 Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); |
300 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); | 337 Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); |
338 Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); | |
301 end | 339 end |
302 end | 340 end |
303 | 341 |
304 D=sparse(Dret); | 342 D = sparse(Dret); |
305 V=sparse(Vret); | 343 V = sparse(Vret); |
306 V=obj.evaluateCoefficientMatrix(V,x,y,z); | 344 Vi = sparse(Viret); |
307 D=obj.evaluateCoefficientMatrix(D,x,y,z); | 345 V = obj.evaluateCoefficientMatrix(V,x,y,z); |
308 DD=diag(D); | 346 Vi= obj.evaluateCoefficientMatrix(Vi,x,y,z); |
309 | 347 D = obj.evaluateCoefficientMatrix(D,x,y,z); |
310 poseig=(DD>0); | 348 DD = diag(D); |
311 zeroeig=(DD==0); | 349 |
312 negeig=(DD<0); | 350 poseig = (DD>0); |
313 | 351 zeroeig = (DD==0); |
314 D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); | 352 negeig = (DD<0); |
315 V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; | 353 |
316 Vi=inv(V); | 354 D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); |
317 signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; | 355 V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; |
356 Vi= [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; | |
357 signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; | |
318 end | 358 end |
319 end | 359 end |
320 end | 360 end |