Mercurial > repos > public > sbplib
diff +scheme/hypsyst2d.m @ 295:da0131655035 feature/hypsyst
Fixed some formatting and naming.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 14:19:34 +0200 |
parents | 8ff6ec6249e8 |
children |
line wrap: on
line diff
--- a/+scheme/hypsyst2d.m Mon Sep 26 09:54:43 2016 +0200 +++ b/+scheme/hypsyst2d.m Mon Sep 26 14:19:34 2016 +0200 @@ -1,4 +1,4 @@ -classdef hypsyst2d < scheme.Scheme +classdef Hypsyst2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system @@ -6,10 +6,10 @@ x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation - + D % non-stabalized scheme operator A, B, E - + H % Discrete norm % Norms in the x and y directions Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. @@ -18,94 +18,91 @@ params %parameters for the coeficient matrices matrices end - - + + methods - function obj = hypsyst2d(m,lim,order,matrices,params) - + function obj = Hypsyst2d(m, lim, order, A, B, E, params) + default_arg('E', []) xlim = lim{1}; ylim = lim{2}; - + if length(m) == 1 m = [m m]; end - + m_x = m(1); m_y = m(2); - obj.params=params; - - obj.matrices=matrices; - + obj.params = params; + + obj.matrices = matrices; + ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); - - obj.x=ops_x.x; - obj.y=ops_y.x; - + + obj.x = ops_x.x; + obj.y = ops_y.x; + obj.X = kr(obj.x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),obj.y); - - obj.A=obj.matrixBuild(matrices.A); - obj.B=obj.matrixBuild(matrices.B); - obj.E=obj.matrixBuild(matrices.E); - - obj.n=length(matrices.A(obj.params,0,0)); - - I_n= eye(obj.n); - I_x = speye(m_x); obj.I_x=I_x; - I_y = speye(m_y); obj.I_y=I_y; - - - D1_x = kr(kr(I_n,ops_x.D1),I_y); - obj.Hxi= kr(kr(I_n,ops_x.HI),I_y); - D1_y=kr(I_n,kr(I_x,ops_y.D1)); - obj.Hyi=kr(I_n,kr(I_x,ops_y.HI)); - - obj.e_w=kr(I_n,kr(ops_x.e_l,I_y)); - obj.e_e=kr(I_n,kr(ops_x.e_r,I_y)); - obj.e_s=kr(I_n,kr(I_x,ops_y.e_l)); - obj.e_n=kr(I_n,kr(I_x,ops_y.e_r)); - + + obj.A = obj.evaluateCoefficientMatrix(matrices.A, obj.X, obj.Y); + obj.B = obj.evaluateCoefficientMatrix(matrices.B, obj.X, obj.Y); + obj.E = obj.evaluateCoefficientMatrix(matrices.E, obj.X, obj.Y); + + obj.n = length(matrices.A(obj.params,0,0)); + + I_n = eye(obj.n);I_x = speye(m_x); + obj.I_x = I_x; + I_y = speye(m_y); + obj.I_y = I_y; + + + D1_x = kr(I_n, ops_x.D1, I_y); + obj.Hxi = kr(I_n, ops_x.HI, I_y); + D1_y = kr(I_n, I_x, ops_y.D1)); + obj.Hyi = kr(I_n, I_x, ops_y.HI)); + + obj.e_w = kr(I_n, ops_x.e_l, I_y); + obj.e_e = kr(I_n, ops_x.e_r, I_y); + obj.e_s = kr(I_n, I_x, ops_y.e_l); + obj.e_n = kr(I_n, I_x, ops_y.e_r); + obj.m=m; obj.h=[ops_x.h ops_y.h]; obj.order=order; - + obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; - + end - + % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. - % neighbour_scheme is an instance of Scheme that should be interfaced to. - % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); switch type case{'c','char'} - [closure,penalty]=GetBoundarydata_char(obj,boundary); + [closure,penalty]=boundary_condition_char(obj,boundary); case{'general'} - [closure,penalty]=GeneralBoundaryCond(obj,boundary,L); + [closure,penalty]=boundary_condition_general(obj,boundary,L); otherwise error('No such boundary condition') end end - + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end - + function N = size(obj) N = obj.m; end - - function [ret]=matrixBuild(obj,mat,X,Y) + + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) params=obj.params; - default_arg('X',obj.X); - default_arg('Y',obj.Y) - + if isa(mat,'function_handle') [rows,cols]=size(mat(params,0,0)); matVec=mat(params,X',Y'); @@ -118,20 +115,20 @@ cols=cols/side; end ret=kron(ones(rows,cols),speye(side)); - + for ii=1:rows for jj=1:cols ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); end end end - - - function [closure, penalty]=GetBoundarydata_char(obj,boundary) + + + function [closure, penalty]=boundary_condition_char(obj,boundary) params=obj.params; x=obj.x; y=obj.y; side=max(length(x),length(y)); - + switch boundary case {'w','W','west'} e_=obj.e_w; @@ -158,9 +155,9 @@ Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); end - + pos=signVec(1); zeroval=signVec(2); neg=signVec(3); - + switch boundPos case {'l'} tau=sparse(obj.n*side,pos*side); @@ -176,13 +173,13 @@ penalty=-Hi*e_*V*tau*Vi_minus; end end - - - function [closure,penalty]=GeneralBoundaryCond(obj,boundary,L) + + + function [closure,penalty]=boundary_condition_general(obj,boundary,L) params=obj.params; x=obj.x; y=obj.y; side=max(length(x),length(y)); - + switch boundary case {'w','W','west'} e_=obj.e_w; @@ -190,32 +187,32 @@ boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); - L=obj.matrixBuild(L,x(1),y); + L=obj.evaluateCoefficientMatrix(L,x(1),y); case {'e','E','east'} e_=obj.e_e; mat=obj.matrices.A; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); - L=obj.matrixBuild(L,x(end),y); + L=obj.evaluateCoefficientMatrix(L,x(end),y); case {'s','S','south'} e_=obj.e_s; mat=obj.matrices.B; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); - L=obj.matrixBuild(L,x,y(1)); + L=obj.evaluateCoefficientMatrix(L,x,y(1)); case {'n','N','north'} e_=obj.e_n; mat=obj.matrices.B; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); - L=obj.matrixBuild(L,x,y(end)); + L=obj.evaluateCoefficientMatrix(L,x,y(end)); end - + pos=signVec(1); zeroval=signVec(2); neg=signVec(3); - + switch boundPos case {'l'} tau=sparse(obj.n*side,pos*side); @@ -223,7 +220,7 @@ Vi_minus=Vi(pos*side+1:obj.n*side,:); V_plus=V(:,1:pos*side); V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); - + tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); R=-inv(L*V_plus)*(L*V_minus); closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; @@ -233,7 +230,7 @@ tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); Vi_plus=Vi(1:pos*side,:); Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); - + V_plus=V(:,1:pos*side); V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); R=-inv(L*V_minus)*(L*V_plus); @@ -241,25 +238,25 @@ penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; end end - - + + function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) params=obj.params; syms xs ys; [V, D]=eig(mat(params,xs,ys)); xs=1;ys=1; DD=eval(diag(D)); - + poseig=find(DD>0); zeroeig=find(DD==0); negeig=find(DD<0); syms xs ys DD=diag(D); - + D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; xs=x; ys=y; - + side=max(length(x),length(y)); Dret=zeros(obj.n,side*obj.n); Vret=zeros(obj.n,side*obj.n); @@ -269,26 +266,14 @@ Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); end end - + D=sparse(Dret); V=sparse(normc(Vret)); - V=obj.matrixBuild(V,x,y); - D=obj.matrixBuild(D,x,y); + V=obj.evaluateCoefficientMatrix(V,x,y); + D=obj.evaluateCoefficientMatrix(D,x,y); Vi=inv(V); signVec=[length(poseig),length(zeroeig),length(negeig)]; end - - end - - methods(Static) - % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u - % and bound_v of scheme schm_v. - % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') - function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) - [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); - [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); - end - - + end end \ No newline at end of file