Mercurial > repos > public > sbplib
comparison +scheme/hypsyst2d.m @ 295:da0131655035 feature/hypsyst
Fixed some formatting and naming.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 14:19:34 +0200 |
parents | 8ff6ec6249e8 |
children |
comparison
equal
deleted
inserted
replaced
294:8ff6ec6249e8 | 295:da0131655035 |
---|---|
1 classdef hypsyst2d < scheme.Scheme | 1 classdef Hypsyst2d < scheme.Scheme |
2 properties | 2 properties |
3 m % Number of points in each direction, possibly a vector | 3 m % Number of points in each direction, possibly a vector |
4 n %size of system | 4 n %size of system |
5 h % Grid spacing | 5 h % Grid spacing |
6 x,y % Grid | 6 x,y % Grid |
7 X,Y % Values of x and y for each grid point | 7 X,Y % Values of x and y for each grid point |
8 order % Order accuracy for the approximation | 8 order % Order accuracy for the approximation |
9 | 9 |
10 D % non-stabalized scheme operator | 10 D % non-stabalized scheme operator |
11 A, B, E | 11 A, B, E |
12 | 12 |
13 H % Discrete norm | 13 H % Discrete norm |
14 % Norms in the x and y directions | 14 % Norms in the x and y directions |
15 Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | 15 Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. |
16 I_x,I_y, I_N | 16 I_x,I_y, I_N |
17 e_w, e_e, e_s, e_n | 17 e_w, e_e, e_s, e_n |
18 params %parameters for the coeficient matrices | 18 params %parameters for the coeficient matrices |
19 matrices | 19 matrices |
20 end | 20 end |
21 | 21 |
22 | 22 |
23 methods | 23 methods |
24 function obj = hypsyst2d(m,lim,order,matrices,params) | 24 function obj = Hypsyst2d(m, lim, order, A, B, E, params) |
25 | 25 default_arg('E', []) |
26 xlim = lim{1}; | 26 xlim = lim{1}; |
27 ylim = lim{2}; | 27 ylim = lim{2}; |
28 | 28 |
29 if length(m) == 1 | 29 if length(m) == 1 |
30 m = [m m]; | 30 m = [m m]; |
31 end | 31 end |
32 | 32 |
33 m_x = m(1); | 33 m_x = m(1); |
34 m_y = m(2); | 34 m_y = m(2); |
35 obj.params=params; | 35 obj.params = params; |
36 | 36 |
37 obj.matrices=matrices; | 37 obj.matrices = matrices; |
38 | 38 |
39 ops_x = sbp.D2Standard(m_x,xlim,order); | 39 ops_x = sbp.D2Standard(m_x,xlim,order); |
40 ops_y = sbp.D2Standard(m_y,ylim,order); | 40 ops_y = sbp.D2Standard(m_y,ylim,order); |
41 | 41 |
42 obj.x=ops_x.x; | 42 obj.x = ops_x.x; |
43 obj.y=ops_y.x; | 43 obj.y = ops_y.x; |
44 | 44 |
45 obj.X = kr(obj.x,ones(m_y,1)); | 45 obj.X = kr(obj.x,ones(m_y,1)); |
46 obj.Y = kr(ones(m_x,1),obj.y); | 46 obj.Y = kr(ones(m_x,1),obj.y); |
47 | 47 |
48 obj.A=obj.matrixBuild(matrices.A); | 48 obj.A = obj.evaluateCoefficientMatrix(matrices.A, obj.X, obj.Y); |
49 obj.B=obj.matrixBuild(matrices.B); | 49 obj.B = obj.evaluateCoefficientMatrix(matrices.B, obj.X, obj.Y); |
50 obj.E=obj.matrixBuild(matrices.E); | 50 obj.E = obj.evaluateCoefficientMatrix(matrices.E, obj.X, obj.Y); |
51 | 51 |
52 obj.n=length(matrices.A(obj.params,0,0)); | 52 obj.n = length(matrices.A(obj.params,0,0)); |
53 | 53 |
54 I_n= eye(obj.n); | 54 I_n = eye(obj.n);I_x = speye(m_x); |
55 I_x = speye(m_x); obj.I_x=I_x; | 55 obj.I_x = I_x; |
56 I_y = speye(m_y); obj.I_y=I_y; | 56 I_y = speye(m_y); |
57 | 57 obj.I_y = I_y; |
58 | 58 |
59 D1_x = kr(kr(I_n,ops_x.D1),I_y); | 59 |
60 obj.Hxi= kr(kr(I_n,ops_x.HI),I_y); | 60 D1_x = kr(I_n, ops_x.D1, I_y); |
61 D1_y=kr(I_n,kr(I_x,ops_y.D1)); | 61 obj.Hxi = kr(I_n, ops_x.HI, I_y); |
62 obj.Hyi=kr(I_n,kr(I_x,ops_y.HI)); | 62 D1_y = kr(I_n, I_x, ops_y.D1)); |
63 | 63 obj.Hyi = kr(I_n, I_x, ops_y.HI)); |
64 obj.e_w=kr(I_n,kr(ops_x.e_l,I_y)); | 64 |
65 obj.e_e=kr(I_n,kr(ops_x.e_r,I_y)); | 65 obj.e_w = kr(I_n, ops_x.e_l, I_y); |
66 obj.e_s=kr(I_n,kr(I_x,ops_y.e_l)); | 66 obj.e_e = kr(I_n, ops_x.e_r, I_y); |
67 obj.e_n=kr(I_n,kr(I_x,ops_y.e_r)); | 67 obj.e_s = kr(I_n, I_x, ops_y.e_l); |
68 | 68 obj.e_n = kr(I_n, I_x, ops_y.e_r); |
69 | |
69 obj.m=m; | 70 obj.m=m; |
70 obj.h=[ops_x.h ops_y.h]; | 71 obj.h=[ops_x.h ops_y.h]; |
71 obj.order=order; | 72 obj.order=order; |
72 | 73 |
73 obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; | 74 obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; |
74 | 75 |
75 end | 76 end |
76 | 77 |
77 % Closure functions return the opertors applied to the own doamin to close the boundary | 78 % Closure functions return the opertors applied to the own doamin to close the boundary |
78 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | 79 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. |
79 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 80 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
80 % type is a string specifying the type of boundary condition if there are several. | 81 % type is a string specifying the type of boundary condition if there are several. |
81 % data is a function returning the data that should be applied at the boundary. | 82 % data is a function returning the data that should be applied at the boundary. |
82 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
83 % neighbour_boundary is a string specifying which boundary to interface to. | |
84 function [closure, penalty] = boundary_condition(obj,boundary,type,L) | 83 function [closure, penalty] = boundary_condition(obj,boundary,type,L) |
85 default_arg('type','char'); | 84 default_arg('type','char'); |
86 switch type | 85 switch type |
87 case{'c','char'} | 86 case{'c','char'} |
88 [closure,penalty]=GetBoundarydata_char(obj,boundary); | 87 [closure,penalty]=boundary_condition_char(obj,boundary); |
89 case{'general'} | 88 case{'general'} |
90 [closure,penalty]=GeneralBoundaryCond(obj,boundary,L); | 89 [closure,penalty]=boundary_condition_general(obj,boundary,L); |
91 otherwise | 90 otherwise |
92 error('No such boundary condition') | 91 error('No such boundary condition') |
93 end | 92 end |
94 end | 93 end |
95 | 94 |
96 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | 95 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) |
97 error('An interface function does not exist yet'); | 96 error('An interface function does not exist yet'); |
98 end | 97 end |
99 | 98 |
100 function N = size(obj) | 99 function N = size(obj) |
101 N = obj.m; | 100 N = obj.m; |
102 end | 101 end |
103 | 102 |
104 function [ret]=matrixBuild(obj,mat,X,Y) | 103 function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) |
105 params=obj.params; | 104 params=obj.params; |
106 default_arg('X',obj.X); | 105 |
107 default_arg('Y',obj.Y) | |
108 | |
109 if isa(mat,'function_handle') | 106 if isa(mat,'function_handle') |
110 [rows,cols]=size(mat(params,0,0)); | 107 [rows,cols]=size(mat(params,0,0)); |
111 matVec=mat(params,X',Y'); | 108 matVec=mat(params,X',Y'); |
112 matVec=sparse(matVec); | 109 matVec=sparse(matVec); |
113 side=max(length(X),length(Y)); | 110 side=max(length(X),length(Y)); |
116 [rows,cols]=size(matVec); | 113 [rows,cols]=size(matVec); |
117 side=max(length(X),length(Y)); | 114 side=max(length(X),length(Y)); |
118 cols=cols/side; | 115 cols=cols/side; |
119 end | 116 end |
120 ret=kron(ones(rows,cols),speye(side)); | 117 ret=kron(ones(rows,cols),speye(side)); |
121 | 118 |
122 for ii=1:rows | 119 for ii=1:rows |
123 for jj=1:cols | 120 for jj=1:cols |
124 ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); | 121 ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); |
125 end | 122 end |
126 end | 123 end |
127 end | 124 end |
128 | 125 |
129 | 126 |
130 function [closure, penalty]=GetBoundarydata_char(obj,boundary) | 127 function [closure, penalty]=boundary_condition_char(obj,boundary) |
131 params=obj.params; | 128 params=obj.params; |
132 x=obj.x; y=obj.y; | 129 x=obj.x; y=obj.y; |
133 side=max(length(x),length(y)); | 130 side=max(length(x),length(y)); |
134 | 131 |
135 switch boundary | 132 switch boundary |
136 case {'w','W','west'} | 133 case {'w','W','west'} |
137 e_=obj.e_w; | 134 e_=obj.e_w; |
138 mat=obj.matrices.A; | 135 mat=obj.matrices.A; |
139 boundPos='l'; | 136 boundPos='l'; |
156 mat=obj.matrices.B; | 153 mat=obj.matrices.B; |
157 boundPos='r'; | 154 boundPos='r'; |
158 Hi=obj.Hxi; | 155 Hi=obj.Hxi; |
159 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); | 156 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); |
160 end | 157 end |
161 | 158 |
162 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); | 159 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); |
163 | 160 |
164 switch boundPos | 161 switch boundPos |
165 case {'l'} | 162 case {'l'} |
166 tau=sparse(obj.n*side,pos*side); | 163 tau=sparse(obj.n*side,pos*side); |
167 Vi_plus=Vi(1:pos*side,:); | 164 Vi_plus=Vi(1:pos*side,:); |
168 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); | 165 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); |
174 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); | 171 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); |
175 closure=Hi*e_*V*tau*Vi_minus*e_'; | 172 closure=Hi*e_*V*tau*Vi_minus*e_'; |
176 penalty=-Hi*e_*V*tau*Vi_minus; | 173 penalty=-Hi*e_*V*tau*Vi_minus; |
177 end | 174 end |
178 end | 175 end |
179 | 176 |
180 | 177 |
181 function [closure,penalty]=GeneralBoundaryCond(obj,boundary,L) | 178 function [closure,penalty]=boundary_condition_general(obj,boundary,L) |
182 params=obj.params; | 179 params=obj.params; |
183 x=obj.x; y=obj.y; | 180 x=obj.x; y=obj.y; |
184 side=max(length(x),length(y)); | 181 side=max(length(x),length(y)); |
185 | 182 |
186 switch boundary | 183 switch boundary |
187 case {'w','W','west'} | 184 case {'w','W','west'} |
188 e_=obj.e_w; | 185 e_=obj.e_w; |
189 mat=obj.matrices.A; | 186 mat=obj.matrices.A; |
190 boundPos='l'; | 187 boundPos='l'; |
191 Hi=obj.Hxi; | 188 Hi=obj.Hxi; |
192 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); | 189 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); |
193 L=obj.matrixBuild(L,x(1),y); | 190 L=obj.evaluateCoefficientMatrix(L,x(1),y); |
194 case {'e','E','east'} | 191 case {'e','E','east'} |
195 e_=obj.e_e; | 192 e_=obj.e_e; |
196 mat=obj.matrices.A; | 193 mat=obj.matrices.A; |
197 boundPos='r'; | 194 boundPos='r'; |
198 Hi=obj.Hxi; | 195 Hi=obj.Hxi; |
199 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); | 196 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); |
200 L=obj.matrixBuild(L,x(end),y); | 197 L=obj.evaluateCoefficientMatrix(L,x(end),y); |
201 case {'s','S','south'} | 198 case {'s','S','south'} |
202 e_=obj.e_s; | 199 e_=obj.e_s; |
203 mat=obj.matrices.B; | 200 mat=obj.matrices.B; |
204 boundPos='l'; | 201 boundPos='l'; |
205 Hi=obj.Hxi; | 202 Hi=obj.Hxi; |
206 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); | 203 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); |
207 L=obj.matrixBuild(L,x,y(1)); | 204 L=obj.evaluateCoefficientMatrix(L,x,y(1)); |
208 case {'n','N','north'} | 205 case {'n','N','north'} |
209 e_=obj.e_n; | 206 e_=obj.e_n; |
210 mat=obj.matrices.B; | 207 mat=obj.matrices.B; |
211 boundPos='r'; | 208 boundPos='r'; |
212 Hi=obj.Hxi; | 209 Hi=obj.Hxi; |
213 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); | 210 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); |
214 L=obj.matrixBuild(L,x,y(end)); | 211 L=obj.evaluateCoefficientMatrix(L,x,y(end)); |
215 end | 212 end |
216 | 213 |
217 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); | 214 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); |
218 | 215 |
219 switch boundPos | 216 switch boundPos |
220 case {'l'} | 217 case {'l'} |
221 tau=sparse(obj.n*side,pos*side); | 218 tau=sparse(obj.n*side,pos*side); |
222 Vi_plus=Vi(1:pos*side,:); | 219 Vi_plus=Vi(1:pos*side,:); |
223 Vi_minus=Vi(pos*side+1:obj.n*side,:); | 220 Vi_minus=Vi(pos*side+1:obj.n*side,:); |
224 V_plus=V(:,1:pos*side); | 221 V_plus=V(:,1:pos*side); |
225 V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); | 222 V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); |
226 | 223 |
227 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); | 224 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); |
228 R=-inv(L*V_plus)*(L*V_minus); | 225 R=-inv(L*V_plus)*(L*V_minus); |
229 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | 226 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; |
230 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; | 227 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; |
231 case {'r'} | 228 case {'r'} |
232 tau=sparse(obj.n*side,neg*side); | 229 tau=sparse(obj.n*side,neg*side); |
233 tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); | 230 tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); |
234 Vi_plus=Vi(1:pos*side,:); | 231 Vi_plus=Vi(1:pos*side,:); |
235 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); | 232 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); |
236 | 233 |
237 V_plus=V(:,1:pos*side); | 234 V_plus=V(:,1:pos*side); |
238 V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); | 235 V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); |
239 R=-inv(L*V_minus)*(L*V_plus); | 236 R=-inv(L*V_minus)*(L*V_plus); |
240 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | 237 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; |
241 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; | 238 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; |
242 end | 239 end |
243 end | 240 end |
244 | 241 |
245 | 242 |
246 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) | 243 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) |
247 params=obj.params; | 244 params=obj.params; |
248 syms xs ys; | 245 syms xs ys; |
249 [V, D]=eig(mat(params,xs,ys)); | 246 [V, D]=eig(mat(params,xs,ys)); |
250 xs=1;ys=1; | 247 xs=1;ys=1; |
251 DD=eval(diag(D)); | 248 DD=eval(diag(D)); |
252 | 249 |
253 poseig=find(DD>0); | 250 poseig=find(DD>0); |
254 zeroeig=find(DD==0); | 251 zeroeig=find(DD==0); |
255 negeig=find(DD<0); | 252 negeig=find(DD<0); |
256 syms xs ys | 253 syms xs ys |
257 DD=diag(D); | 254 DD=diag(D); |
258 | 255 |
259 D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); | 256 D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); |
260 V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; | 257 V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; |
261 xs=x; ys=y; | 258 xs=x; ys=y; |
262 | 259 |
263 side=max(length(x),length(y)); | 260 side=max(length(x),length(y)); |
264 Dret=zeros(obj.n,side*obj.n); | 261 Dret=zeros(obj.n,side*obj.n); |
265 Vret=zeros(obj.n,side*obj.n); | 262 Vret=zeros(obj.n,side*obj.n); |
266 for ii=1:obj.n | 263 for ii=1:obj.n |
267 for jj=1:obj.n | 264 for jj=1:obj.n |
268 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); | 265 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); |
269 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); | 266 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); |
270 end | 267 end |
271 end | 268 end |
272 | 269 |
273 D=sparse(Dret); | 270 D=sparse(Dret); |
274 V=sparse(normc(Vret)); | 271 V=sparse(normc(Vret)); |
275 V=obj.matrixBuild(V,x,y); | 272 V=obj.evaluateCoefficientMatrix(V,x,y); |
276 D=obj.matrixBuild(D,x,y); | 273 D=obj.evaluateCoefficientMatrix(D,x,y); |
277 Vi=inv(V); | 274 Vi=inv(V); |
278 signVec=[length(poseig),length(zeroeig),length(negeig)]; | 275 signVec=[length(poseig),length(zeroeig),length(negeig)]; |
279 end | 276 end |
280 | 277 |
281 end | |
282 | |
283 methods(Static) | |
284 % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u | |
285 % and bound_v of scheme schm_v. | |
286 % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') | |
287 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) | |
288 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); | |
289 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); | |
290 end | |
291 | |
292 | |
293 end | 278 end |
294 end | 279 end |