Mercurial > repos > public > sbplib
view +scheme/hypsyst2d.m @ 294:8ff6ec6249e8 feature/hypsyst
"General" boundary conditions implemented
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Mon, 26 Sep 2016 09:54:43 +0200 |
parents | 2d604d16842c |
children | da0131655035 |
line wrap: on
line source
classdef hypsyst2d < scheme.Scheme properties m % Number of points in each direction, possibly a vector n %size of system h % Grid spacing x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation D % non-stabalized scheme operator A, B, E H % Discrete norm % Norms in the x and y directions Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y, I_N e_w, e_e, e_s, e_n params %parameters for the coeficient matrices matrices end methods function obj = hypsyst2d(m,lim,order,matrices,params) xlim = lim{1}; ylim = lim{2}; if length(m) == 1 m = [m m]; end m_x = m(1); m_y = m(2); obj.params=params; obj.matrices=matrices; ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); obj.x=ops_x.x; obj.y=ops_y.x; obj.X = kr(obj.x,ones(m_y,1)); obj.Y = kr(ones(m_x,1),obj.y); obj.A=obj.matrixBuild(matrices.A); obj.B=obj.matrixBuild(matrices.B); obj.E=obj.matrixBuild(matrices.E); obj.n=length(matrices.A(obj.params,0,0)); I_n= eye(obj.n); I_x = speye(m_x); obj.I_x=I_x; I_y = speye(m_y); obj.I_y=I_y; D1_x = kr(kr(I_n,ops_x.D1),I_y); obj.Hxi= kr(kr(I_n,ops_x.HI),I_y); D1_y=kr(I_n,kr(I_x,ops_y.D1)); obj.Hyi=kr(I_n,kr(I_x,ops_y.HI)); obj.e_w=kr(I_n,kr(ops_x.e_l,I_y)); obj.e_e=kr(I_n,kr(ops_x.e_r,I_y)); obj.e_s=kr(I_n,kr(I_x,ops_y.e_l)); obj.e_n=kr(I_n,kr(I_x,ops_y.e_r)); obj.m=m; obj.h=[ops_x.h ops_y.h]; obj.order=order; obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); switch type case{'c','char'} [closure,penalty]=GetBoundarydata_char(obj,boundary); case{'general'} [closure,penalty]=GeneralBoundaryCond(obj,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end function N = size(obj) N = obj.m; end function [ret]=matrixBuild(obj,mat,X,Y) params=obj.params; default_arg('X',obj.X); default_arg('Y',obj.Y) if isa(mat,'function_handle') [rows,cols]=size(mat(params,0,0)); matVec=mat(params,X',Y'); matVec=sparse(matVec); side=max(length(X),length(Y)); else matVec=mat; [rows,cols]=size(matVec); side=max(length(X),length(Y)); cols=cols/side; end ret=kron(ones(rows,cols),speye(side)); for ii=1:rows for jj=1:cols ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); end end end function [closure, penalty]=GetBoundarydata_char(obj,boundary) params=obj.params; x=obj.x; y=obj.y; side=max(length(x),length(y)); switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.matrices.A; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); case {'e','E','east'} e_=obj.e_e; mat=obj.matrices.A; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); case {'s','S','south'} e_=obj.e_s; mat=obj.matrices.B; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); case {'n','N','north'} e_=obj.e_n; mat=obj.matrices.B; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); end pos=signVec(1); zeroval=signVec(2); neg=signVec(3); switch boundPos case {'l'} tau=sparse(obj.n*side,pos*side); Vi_plus=Vi(1:pos*side,:); tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); closure=Hi*e_*V*tau*Vi_plus*e_'; penalty=-Hi*e_*V*tau*Vi_plus; case {'r'} tau=sparse(obj.n*side,neg*side); tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); closure=Hi*e_*V*tau*Vi_minus*e_'; penalty=-Hi*e_*V*tau*Vi_minus; end end function [closure,penalty]=GeneralBoundaryCond(obj,boundary,L) params=obj.params; x=obj.x; y=obj.y; side=max(length(x),length(y)); switch boundary case {'w','W','west'} e_=obj.e_w; mat=obj.matrices.A; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); L=obj.matrixBuild(L,x(1),y); case {'e','E','east'} e_=obj.e_e; mat=obj.matrices.A; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); L=obj.matrixBuild(L,x(end),y); case {'s','S','south'} e_=obj.e_s; mat=obj.matrices.B; boundPos='l'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); L=obj.matrixBuild(L,x,y(1)); case {'n','N','north'} e_=obj.e_n; mat=obj.matrices.B; boundPos='r'; Hi=obj.Hxi; [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); L=obj.matrixBuild(L,x,y(end)); end pos=signVec(1); zeroval=signVec(2); neg=signVec(3); switch boundPos case {'l'} tau=sparse(obj.n*side,pos*side); Vi_plus=Vi(1:pos*side,:); Vi_minus=Vi(pos*side+1:obj.n*side,:); V_plus=V(:,1:pos*side); V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); R=-inv(L*V_plus)*(L*V_minus); closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau=sparse(obj.n*side,neg*side); tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); Vi_plus=Vi(1:pos*side,:); Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); V_plus=V(:,1:pos*side); V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); R=-inv(L*V_minus)*(L*V_plus); closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; end end function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) params=obj.params; syms xs ys; [V, D]=eig(mat(params,xs,ys)); xs=1;ys=1; DD=eval(diag(D)); poseig=find(DD>0); zeroeig=find(DD==0); negeig=find(DD<0); syms xs ys DD=diag(D); D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; xs=x; ys=y; side=max(length(x),length(y)); Dret=zeros(obj.n,side*obj.n); Vret=zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); end end D=sparse(Dret); V=sparse(normc(Vret)); V=obj.matrixBuild(V,x,y); D=obj.matrixBuild(D,x,y); Vi=inv(V); signVec=[length(poseig),length(zeroeig),length(negeig)]; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end