Mercurial > repos > public > sbplib
diff +scheme/Laplace1d.m @ 1072:6468a5f6ec79 feature/grids/LaplaceSquared
Merge with default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 12 Feb 2019 17:12:42 +0100 |
parents | 0c504a21432d |
children | ae4b090b5299 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Laplace1d.m Tue Feb 12 17:12:42 2019 +0100 @@ -0,0 +1,158 @@ +classdef Laplace1d < scheme.Scheme + properties + grid + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + H % Discrete norm + M % Derivative norm + a + + D2 + Hi + e_l + e_r + d_l + d_r + gamm + end + + methods + function obj = Laplace1d(grid, order, a) + default_arg('a', 1); + + assertType(grid, 'grid.Cartesian'); + + ops = sbp.D2Standard(grid.size(), grid.lim{1}, order); + + obj.D2 = sparse(ops.D2); + obj.H = sparse(ops.H); + obj.Hi = sparse(ops.HI); + obj.M = sparse(ops.M); + obj.e_l = sparse(ops.e_l); + obj.e_r = sparse(ops.e_r); + obj.d_l = -sparse(ops.d1_l); + obj.d_r = sparse(ops.d1_r); + + + obj.grid = grid; + obj.order = order; + + obj.a = a; + obj.D = a*obj.D2; + + obj.gamm = grid.h*ops.borrowing.M.S; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + e = obj.getBoundaryOperator('e', boundary); + d = obj.getBoundaryOperator('d', boundary); + s = obj.getBoundarySign(boundary); + + switch type + % Dirichlet boundary condition + case {'D','dirichlet'} + tuning = 1.1; + tau1 = -tuning/obj.gamm; + tau2 = 1; + + tau = tau1*e + tau2*d; + + closure = obj.a*obj.Hi*tau*e'; + penalty = obj.a*obj.Hi*tau; + + % Neumann boundary condition + case {'N','neumann'} + tau = -e; + + closure = obj.a*obj.Hi*tau*d'; + penalty = -obj.a*obj.Hi*tau; + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + e_u = obj.getBoundaryOperator('e', boundary); + d_u = obj.getBoundaryOperator('d', boundary); + s_u = obj.getBoundarySign(boundary); + + e_v = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); + d_v = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary); + s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); + + a_u = obj.a; + a_v = neighbour_scheme.a; + + gamm_u = obj.gamm; + gamm_v = neighbour_scheme.gamm; + + tuning = 1.1; + + tau1 = -(a_u/gamm_u + a_v/gamm_v) * tuning; + tau2 = 1/2*a_u; + sig1 = -1/2; + sig2 = 0; + + tau = tau1*e_u + tau2*d_u; + sig = sig1*e_u + sig2*d_u; + + closure = obj.Hi*( tau*e_u' + sig*a_u*d_u'); + penalty = obj.Hi*(-tau*e_v' + sig*a_v*d_v'); + end + + % Returns the boundary operator op for the boundary specified by the string boundary. + % op -- string + % boundary -- string + function o = getBoundaryOperator(obj, op, boundary) + assertIsMember(op, {'e', 'd'}) + assertIsMember(boundary, {'l', 'r'}) + + o = obj.([op, '_', boundary]) + end + + % Returns square boundary quadrature matrix, of dimension + % corresponding to the number of boundary points + % + % boundary -- string + % Note: for 1d diffOps, the boundary quadrature is the scalar 1. + function H_b = getBoundaryQuadrature(obj, boundary) + assertIsMember(boundary, {'l', 'r'}) + + H_b = 1; + end + + % Returns the boundary sign. The right boundary is considered the positive boundary + % boundary -- string + function s = getBoundarySign(obj, boundary) + assertIsMember(boundary, {'l', 'r'}) + + switch boundary + case {'r'} + s = 1; + case {'l'} + s = -1; + end + end + + function N = size(obj) + N = obj.grid.size(); + end + + end +end